Skip to main content

Advertisement

Log in

Long-term modulation of Na+ and K+ channels by TGF-β1 in neonatal rat cardiac myocytes

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Previous work shows that transforming growth factor-β1 (TGF-β1) promotes several heart alterations, including atrial fibrillation (AF). In this work, we hypothesized that these effects might be associated with a potential modulation of Na+ and K+ channels. Atrial myocytes were cultured 1–2 days under either control conditions, or the presence of TGF-β1. Subsequently, Na+ (INa) and K+ (IK) currents were investigated under whole-cell patch-clamp conditions. Three K+ currents were isolated: inward rectifier (IKin), outward transitory (Ito), and outward sustained (IKsus). Interestingly, TGF-β1 decreased (50%) the densities of IKin and IKsus but not of Ito. In addition, the growth factor reduced by 80% the amount of INa available at −80 mV. This effect was due to a significant reduction (30%) in the maximum INa recruited at very negative potentials or Imax, as well as to an increased fraction of inactivated Na+ channels. The latter effect was, in turn, associated to a −7 mV shift in V1/2 of inactivation. TGF-β1 also reduced by 60% the maximum amount of intramembrane charge movement of Na+ channels or Qmax, but did not affect the corresponding voltage dependence of activation. This suggests that TGF-β1 promotes loss of Na+ channels from the plasma membrane. Moreover, TGF-β1 also reduced (50%) the expression of the principal subunit of Na+ channels, as indicated by western blot analysis. Thus, TGF-β1 inhibits the expression of Na+ channels, as well as the activity of K+ channels that give rise to IKsus and IKin. These results may contribute to explaining the previously observed proarrhythmic effects of TGF-β1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61:644–683

    CAS  PubMed  Google Scholar 

  2. Armstrong CM, Cota G (1990) Modification of sodium channel gating by lanthanum. Some effects that cannot be explained by surface charge theory. J Gen Physiol 96:1129–1140

    Article  CAS  PubMed  Google Scholar 

  3. Avila G, Medina IM, Jiménez E et al (2007) Transforming growth factor-β1 decreases cardiac muscle L-type Ca2+ current and charge movement by acting on the Cav1.2 mRNA. Am J Physiol Heart Circ Physiol 292:622–631

    Article  CAS  Google Scholar 

  4. Balser JR (2001) The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 33:599–613

    Article  CAS  PubMed  Google Scholar 

  5. Bean BP, Rios E (1989) Nonlinear charge movement in mammalian cardiac ventricular cells. Components from Na and Ca channel gating. J Gen Physiol 94:65–93

    Article  CAS  PubMed  Google Scholar 

  6. Beffagna G, Occhi G, Nava A et al (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65:366–373

    Article  CAS  PubMed  Google Scholar 

  7. Behfar A, Zingman LV, Hodgson DM et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566

    Article  PubMed  Google Scholar 

  8. Bers, D (2001) Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd edn. Kluwer Academic Publishers 63–99

  9. Brundel BJ, Van Gelder IC, Henning RH et al (2001) Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol 37:926–932

    Article  CAS  PubMed  Google Scholar 

  10. Brundel BJ, van Gelder IC, Henning RH et al (1999) Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res 42:443–454

    Article  CAS  PubMed  Google Scholar 

  11. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  CAS  PubMed  Google Scholar 

  12. Burstein B, Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51:802–809

    Article  CAS  PubMed  Google Scholar 

  13. Caballero R, de la Fuente MG, Gómez R et al (2010) In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol 55:2346–2354

    Article  PubMed  Google Scholar 

  14. Caffrey JM, Brown AM, Schneider MD (1989) Ca2+ and Na+ currents in developing skeletal myoblasts are expressed in a sequential program: reversible suppression by transforming growth factor beta-1, an inhibitor of the myogenic pathway. J Neurosci 9:3443–3453

    CAS  PubMed  Google Scholar 

  15. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  CAS  PubMed  Google Scholar 

  16. Chang H, Brown CW, Matzuk MM (2002) Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev 23:787–823

    Article  CAS  PubMed  Google Scholar 

  17. Deal KK, England SK, Tamkun MM (1996) Molecular physiology of cardiac potassium channels. Physiol Rev 76:49–67

    CAS  PubMed  Google Scholar 

  18. Deynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–583

    Article  CAS  Google Scholar 

  19. Er F, Larbig R, Ludwig A et al (2003) Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 107:485–489

    Article  PubMed  Google Scholar 

  20. Fernández-Velasco M, Ruiz-Hurtado G, Hurtado O et al (2007) TNF-alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol 293:H238–H245

    Article  PubMed  CAS  Google Scholar 

  21. Field AC, Hill C, Lamb GD (1988) Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. J Physiol 406:277–297

    CAS  PubMed  Google Scholar 

  22. Gaborit N, Steenman M, Lamirault G et al (2005) Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112:471–481

    Article  PubMed  Google Scholar 

  23. Gaspo R, Bosch RF, Bou-Abboud E et al (1997) Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ Res 81:1045–1052

    CAS  PubMed  Google Scholar 

  24. Gaspo R, Sun H, Fareh S et al (1999) Dihydropyridine and beta adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Cardiovasc Res 42:434–442

    Article  CAS  PubMed  Google Scholar 

  25. Josephson IR, Sperelakis N (1992) Kinetic and steady-state properties of Na+ channel and Ca2+ channel charge movements in ventricular myocytes of embryonic chick heart. J Gen Physiol 100:195–216

    Article  CAS  PubMed  Google Scholar 

  26. Kaczmarek LK, Bhattacharjee A, Desai R et al (2005) Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels. Hear Res 206:133–145

    Article  CAS  PubMed  Google Scholar 

  27. Lai LP, Su MJ, Lin JL et al (1999) Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation. Cardiology 92:248–255

    Article  CAS  PubMed  Google Scholar 

  28. Li S, Li X, Zheng H et al (2008) Pro-oxidant effect of transforming growth factor-β1 mediates contractile dysfunction in rat ventricular myocytes. Cardiovasc Res 77:107–117

    Article  CAS  PubMed  Google Scholar 

  29. Li TS, Hayashi M, Ito H et al (2005) Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-beta- preprogrammed bone marrow stem cells. Circulation 111:2438–2445

    Article  CAS  PubMed  Google Scholar 

  30. Long CS (1996) Autocrine and paracrine regulation of myocardial cell growth in vitro. The TGFβ paradigm. Trends Cardiovasc Med 6:217–226

    Article  CAS  PubMed  Google Scholar 

  31. Mejia-Luna L, Avila G (2004) Ca2+ channel regulation by transforming growth factor-beta 1 and bone morphogenetic protein-2 in developing mice myotubes. J Physiol 559:41–54

    Article  CAS  PubMed  Google Scholar 

  32. Nakajima Y, Hokari S, Yamagishi T et al (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258:119–127

    Article  CAS  PubMed  Google Scholar 

  33. Nattel S, Burstein B, Dobrev D (2008) Atrial remodeling and atrial fibrillation, mechanisms and implications. Circ arrhythmia electrophysiol 1:62–73

    Article  Google Scholar 

  34. Nattel S, Maguy A, Le Bouter S et al (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456

    Article  CAS  PubMed  Google Scholar 

  35. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85:1205–1253

    Article  CAS  PubMed  Google Scholar 

  36. Ng CM, Cheng A, Myers LA et al (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    CAS  PubMed  Google Scholar 

  37. Perillan PR, Chen M, Potts EA et al (2002) Transforming growth factor-beta 1 regulates Kir2.3 inward rectifier K+ channels via phospholipase C and protein kinase C-delta in reactive astrocytes from adult rat brain. J Biol Chem 277:1974–1980

    Article  CAS  PubMed  Google Scholar 

  38. Petkova-Kirova PS, Gursoy E, Mehdi H et al (2006) Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha. Am J Physiol Heart Circ Physiol 290:H2098–H2107

    Article  CAS  PubMed  Google Scholar 

  39. Ramos-Mondragón R, Galindo CA, Avila G (2008) Role of TGF-beta on cardiac structural and electrical remodeling. Vasc Health Risk Manag 4:1289–1300

    PubMed  Google Scholar 

  40. Robinson RB, Yu H, Chang F et al (1997) Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells. Pflugers Arch 433:533–535

    Article  CAS  PubMed  Google Scholar 

  41. Schilling T, Eder C (2003) Effects of kinase inhibitors on TGF-beta induced upregulation of Kv1.3 K+ channels in brain macrophages. Pflugers Arch 447:312–315

    Article  CAS  PubMed  Google Scholar 

  42. Shih HT, Wathen MS, Marshall HB et al (1990) Dihydropyridine receptor gene expression is regulated by inhibitors of myogenesis and is relatively insensitive to denervation. J Clin Invest 85:781–789

    Article  CAS  PubMed  Google Scholar 

  43. Sossalla S, Kallmeyer B, Wagner S et al (2010) Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342

    Article  CAS  PubMed  Google Scholar 

  44. Sun ZQ, Ojamaa K, Nakamura TY et al (2001) Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33:811–824

    Article  CAS  PubMed  Google Scholar 

  45. van Vliet P, de Boer TP, Sluijter JP et al (2007) Abstract 1074: Potassium inward rectifier expression is regulated by TGFß and BMP in human cardiomyocyte progenitor cells. Circulation 116:215

    Google Scholar 

  46. Van Wagoner DR, Pond AL, McCarthy PM et al (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 80:772–781

    PubMed  Google Scholar 

  47. Verheule S, Sato T, Everett T IV et al (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ Res 94:1458–1465

    Article  CAS  PubMed  Google Scholar 

  48. Wagner SR, Dybkova N, Rasenack EC et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138

    Article  CAS  PubMed  Google Scholar 

  49. Wu MM, Gao PJ, Jiao S et al (2003) TGF-beta1 induces the expression of fast inactivating K+ (I(A)) channels in rat vascular myofibroblasts. Biochem Biophys Res Commun 301:17–23

    Article  CAS  PubMed  Google Scholar 

  50. Yue L, Feng J, Gaspo R et al (1997) Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res 81:512–525

    CAS  PubMed  Google Scholar 

  51. Yue L, Melnyk P, Gaspo R et al (1999) Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ Res 84:776–784

    CAS  PubMed  Google Scholar 

  52. Zakon HH (1998) The effects of steroid hormones on electrical activity of excitable cells. Trends Neurosci 21:202–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mario Rodriguez and Esperanza Jimenez for the technical assistance. We also thank Dr. Gary Matthews for his generous gift of anti-pan Na+ channel antibody. This work was supported by a Conacyt grant to GA (56733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Avila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Mondragón, R., Vega, A.V. & Avila, G. Long-term modulation of Na+ and K+ channels by TGF-β1 in neonatal rat cardiac myocytes. Pflugers Arch - Eur J Physiol 461, 235–247 (2011). https://doi.org/10.1007/s00424-010-0912-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0912-3

Keywords

Navigation