Skip to main content

Advertisement

Log in

Proteomic assessment of the acute phase of dystrophin deficiency in mdx mice

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is caused by the absence of a functional dystrophin protein and is modeled by the mdx mouse. The mdx mouse suffers an early necrotic bout in the hind limb muscles lasting from approximately 4 to 7 weeks. The purpose of this investigation was to determine the extent to which dystrophin deficiency changed the proteome very early in the disease process. In order to accomplish this, proteins from gastrocnemius from 6-week-old C57 (n = 6) and mdx (n = 6) mice were labeled with fluorescent dye and subjected to two-dimensional differential in-gel electrophoresis (2D-DIGE). Resulting differentially expressed spots were excised and protein identity determined via MALDI-TOF followed by database searching using MASCOT. Proteins of the immediate energy system and glycolysis were generally down-regulated in mdx mice compared to C57 mice. Conversely, expression of proteins involved in the Kreb’s cycle and electron transport chain were increased in dystrophin-deficient muscle compared to control. Expression of cytoskeletal components, including tubulins, vimentin, and collagen, were increased in mdx mice compared to C57 mice. Importantly, these changes are occurring at only 6 weeks of age and are caused by acute dystrophin deficiency rather than more chronic injury. These data may provide insight regarding early pathologic changes occurring in dystrophin-deficient skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Banerjee B, Sharma U, Balasubramanian K, Kalaivani M, Kalra V, Jagannathan NR (2010) Effect of creatine monohydrate in improving cellular energetics and muscle strength in ambulatory Duchenne muscular dystrophy patients: a randomized, placebo-controlled 31P MRS study. Magn Reson Imaging 28:698–707

    Article  PubMed  CAS  Google Scholar 

  • Bornman L, Polla BS, Lotz BP, Gericke GS (1995) Expression of heat-shock/stress proteins in Duchenne muscular dystrophy. Muscle Nerve 18:23–31

    Article  PubMed  CAS  Google Scholar 

  • Bornman L, Rossouw H, Gericke GS, Polla BS (1998) Effects of iron deprivation on the pathology and stress protein expression in murine X-linked muscular dystrophy. Biochem Pharmacol 56:751–757

    Article  PubMed  CAS  Google Scholar 

  • Braun U, Paju K, Eimre M, Seppet E, Orlova E, Kadaja L, Trumbeckaite S, Gellerich FN, Zierz S, Jockusch H, Seppet EK (2001) Lack of dystrophin is associated with altered integration of the mitochondria and ATPases in slow-twitch muscle cells of MDX mice. Biochim Biophys Acta 1505:258–270

    Article  PubMed  CAS  Google Scholar 

  • Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  PubMed  CAS  Google Scholar 

  • Chakkalakal JV, Michel SA, Chin ER, Michel RN, Jasmin BJ (2006) Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 15:1423–1435

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2002) Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 1:304–313

    Article  PubMed  CAS  Google Scholar 

  • Chi MM, Hintz CS, McKee D, Felder S, Grant N, Kaiser KK, Lowry OH (1987) Effect of Duchenne muscular dystrophy on enzymes of energy metabolism in individual muscle fibers. Metabolism 36:761–767

    Article  PubMed  CAS  Google Scholar 

  • Cole MA, Rafael JA, Taylor DJ, Lodi R, Davies KE, Styles P (2002) A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin. Neuromuscul Disord 12:247–257

    Article  PubMed  CAS  Google Scholar 

  • Disatnik MH, Dhawan J, Yu Y, Beal MF, Whirl MM, Franco AA, Rando TA (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161:77–84

    Article  PubMed  CAS  Google Scholar 

  • Doran P, Dowling P, Lohan J, McDonnell K, Poetsch S, Ohlendieck K (2004) Subproteomics analysis of Ca+-binding proteins demonstrates decreased calsequestrin expression in dystrophic mouse skeletal muscle. Eur J Biochem 271:3943–3952

    Article  PubMed  CAS  Google Scholar 

  • Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6:4610–4621

    Article  PubMed  CAS  Google Scholar 

  • Doran P, O’Connell K, Gannon J, Kavanagh M, Ohlendieck K (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  PubMed  CAS  Google Scholar 

  • Doran P, Wilton SD, Fletcher S, Ohlendieck K (2009) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9:671–685

    Article  PubMed  CAS  Google Scholar 

  • Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12:469–476

    Article  PubMed  CAS  Google Scholar 

  • Frascarelli M, Rocchi L, Feola I (1988) EMG computerized analysis of localized fatigue in Duchenne muscular dystrophy. Muscle Nerve 11:757–761

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Lilley KS (2008) Optimizing the difference gel electrophoresis (DIGE) technology. In: Vlahou A (ed) Clinical proteomics: methods and protocols. Humana Press, Totowa, NJ, pp 93–124

    Google Scholar 

  • Ge Y, Molloy MP, Chamberlain JS, Andrews PC (2003) Proteomic analysis of mdx skeletal muscle: great reduction of adenylate kinase 1 expression and enzymatic activity. Proteomics 3:1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Molloy MP, Chamberlain JS, Andrews PC (2004) Differential expression of the skeletal muscle proteome in mdx mice at different ages. Electrophoresis 25:2576–2585

    Article  PubMed  CAS  Google Scholar 

  • Gramolini AO, Belanger G, Thompson JM, Chakkalakal JV, Jasmin BJ (2001) Increased expression of utrophin in a slow vs. a fast muscle involves posttranscriptional events. Am J Physiol Cell Physiol 281:C1300–C1309

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Haslett JN, Kang PB, Han M, Kho AT, Sanoudou D, Volinski JM, Beggs AH, Kohane IS, Kunkel LM (2005) The influence of muscle type and dystrophin deficiency on murine expression profiles. Mamm Genome 16:739–748

    Article  PubMed  CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Dunn JF, Frostick SP, Radda GK (1993) Cellular energetics of dystrophic muscle. J Neurol Sci 116:201–206

    Article  PubMed  CAS  Google Scholar 

  • Kleopa KA, Drousiotou A, Mavrikiou E, Ormiston A, Kyriakides T (2006) Naturally occurring utrophin correlates with disease severity in Duchenne muscular dystrophy. Hum Mol Genet 15:1623–1628

    Article  PubMed  CAS  Google Scholar 

  • Lametsch R, Roepstorff P, Moller HS, Bendixen E (2004) Identification of myofibrillar substrates for mu-calpain. Meat Sci 68:515–521

    Article  CAS  Google Scholar 

  • Lodi R, Kemp GJ, Muntoni F, Thompson CH, Rae C, Taylor J, Styles P, Taylor DJ (1999) Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain 122(Pt 1):121–130

    Article  PubMed  Google Scholar 

  • Marotta M, Ruiz-Roig C, Sarria Y, Peiro JL, Nunez F, Ceron J, Munell F, Roig-Quilis M (2009) Muscle genome-wide expression profiling during disease evolution in mdx mice. Physiol Genomics 37:119–132

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama SS, Jarvik LF (1989) Hypothesis: microtubules, a key to Alzheimer disease. Proc Natl Acad Sci USA 86:8152–8156

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339:603–610

    Article  PubMed  CAS  Google Scholar 

  • Onopiuk M, Brutkowski W, Wierzbicka K, Wojciechowska S, Szczepanowska J, Fronk J, Lochmuller H, Gorecki DC, Zablocki K (2009) Mutation in dystrophin-encoding gene affects energy metabolism in mouse myoblasts. Biochem Biophys Res Commun 386:463–466

    Article  PubMed  CAS  Google Scholar 

  • Passaquin AC, Renard M, Kay L, Challet C, Mokhtarian A, Wallimann T, Ruegg UT (2002) Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromuscul Disord 12:174–182

    Article  PubMed  Google Scholar 

  • Percival JM, Gregorevic P, Odom GL, Banks GB, Chamberlain JS, Froehner SC (2007) rAAV6-microdystrophin rescues aberrant golgi complex organization in mdx skeletal muscles. Traffic 8:1424–1439

    Article  PubMed  CAS  Google Scholar 

  • Prins KW, Humston JL, Mehta A, Tate V, Ralston E, Ervasti JM (2009) Dystrophin is a microtubule-associated protein. J Cell Biol 186:363–369

    Article  PubMed  CAS  Google Scholar 

  • Pulido SM, Passaquin AC, Leijendekker WJ, Challet C, Wallimann T, Ruegg UT (1998) Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett 439:357–362

    Article  PubMed  CAS  Google Scholar 

  • Rouger K, Le Cunff M, Steenman M, Potier MC, Gibelin N, Dechesne CA, Leger JJ (2002) Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice. Am J Physiol Cell Physiol 283:C773–C784

    PubMed  CAS  Google Scholar 

  • Sacco P, Jones DA, Dick JR, Vrbova G (1992) Contractile properties and susceptibility to exercise-induced damage of normal and mdx mouse tibialis anterior muscle. Clin Sci (Lond) 82:227–236

    CAS  Google Scholar 

  • Selsby JT (2011) Increased catalase expression improves muscle function in mdx mice. Exp Physiol 96:194–202

    PubMed  CAS  Google Scholar 

  • Selsby J, Pendrak K, Zadel M, Tian Z, Pham J, Carver T, Acosta P, Barton E, Sweeney HL (2010) Leupeptin-based inhibitors do not improve the mdx phenotype. Am J Physiol Regul Integr Comp Physiol 299:R1192–R1201

    Article  PubMed  CAS  Google Scholar 

  • Shkryl VM, Martins AS, Ullrich ND, Nowycky MC, Niggli E, Shirokova N (2009) Reciprocal amplification of ROS and Ca(2+) signals in stressed mdx dystrophic skeletal muscle fibers. Pflugers Arch 458:915–928

    Article  PubMed  CAS  Google Scholar 

  • Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  PubMed  CAS  Google Scholar 

  • Spencer MJ, Croall DE, Tidball JG (1995) Calpains are activated in necrotic fibers from mdx dystrophic mice. J Biol Chem 270:10909–10914

    Article  PubMed  CAS  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  PubMed  CAS  Google Scholar 

  • Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE (1996) Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384:349–353

    Article  PubMed  CAS  Google Scholar 

  • Tkatchenko AV, Pietu G, Cros N, Gannoun-Zaki L, Auffray C, Leger JJ, Dechesne CA (2001) Identification of altered gene expression in skeletal muscles from Duchenne muscular dystrophy patients. Neuromuscul Disord 11:269–277

    Article  PubMed  CAS  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  • Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52:503–513

    Article  PubMed  CAS  Google Scholar 

  • Wehling-Henricks M, Oltmann M, Rinaldi C, Myung KH, Tidball JG (2009) Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Hum Mol Genet 18:3439–3451

    Article  PubMed  CAS  Google Scholar 

  • Wong B, Gilbert DL, Walker WL, Liao IH, Lit L, Stamova B, Jickling G, Apperson M, Sharp FR (2009) Gene expression in blood of subjects with Duchenne muscular dystrophy. Neurogenetics 10:117–125

    Article  PubMed  CAS  Google Scholar 

  • Yuasa K, Nakamura A, Hijikata T, Takeda S (2008) Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. BMC Musculoskelet Disord 9:1

    Article  PubMed  Google Scholar 

  • Zhang W, ten Hove M, Schneider JE, Stuckey DJ, Sebag-Montefiore L, Bia BL, Radda GK, Davies KE, Neubauer S, Clarke K (2008) Abnormal cardiac morphology, function and energy metabolism in the dystrophic mdx mouse: an MRI and MRS study. J Mol Cell Cardiol 45:754–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Alyona Avdonina for technical assistance. We have no disclosures. Support provided by the Center for Integrated Animal Genomics (JTS and SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Selsby.

Additional information

Communicated by Martin Flueck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardan-Salmon, D., Dixon, J.M., Lonergan, S.M. et al. Proteomic assessment of the acute phase of dystrophin deficiency in mdx mice. Eur J Appl Physiol 111, 2763–2773 (2011). https://doi.org/10.1007/s00421-011-1906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1906-3

Keywords

Navigation