Skip to main content
Log in

A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was adopted in this study to investigate the representation of cloud and precipitation processes under different environmental conditions. The scheme predicts the mixing ratio of water vapor as well as the mixing ratios and number concentrations of cloud droplets, rain, ice, snow, and graupel. A new parameterization approach to simulate heterogeneous droplet activation was developed in this scheme. Furthermore, the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3.1), which made it possible to simulate the microphysics of clouds and precipitation as well as the cloud-aerosol interactions in selected atmospheric condition.

The rain event occurring on 27–28 December 2008 in eastern China was simulated using the CAMS scheme and three sophisticated microphysics schemes in the WRF model. Results showed that the simulated 36-h accumulated precipitations were generally agreed with observation data, and the CAMS scheme performed well in the southern area of the nested domain. The radar reflectivity, the averaged precipitation intensity, and the hydrometeor mixing ratios simulated by the CAMS scheme were generally consistent with those from other microphysics schemes. The hydrometeor number concentrations simulated by the CAMS scheme were also close to the experiential values in stratus clouds. The model results suggest that the CAMS scheme performs reasonably well in describing the microphysics of clouds and precipitation in the mesoscale WRF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation 1. Single aerosol type. J. Geophys. Res., 103, 6123–6131.

    Article  Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Berg, W., T. L’Ecuyer, and S. van den Heever, 2008: Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud resolving model simulations. J. Geophys. Res., 113, D14S23, doi: 10.1029/2007JD009649.

    Article  Google Scholar 

  • Berry, E. X., 1968: Modification of the warm rain process. Preprints, the First National Conference on Weather Modification, Albany, N. Y., Amer. Meteor. Soc., 81–88.

  • Borrmann, S., and R. Jaenicke, 1993: Application of microholography for ground-based in situ measurements in stratus cloud layers: A case study. J. Atmos. Oceanic Technol., 10, 277–293.

    Article  Google Scholar 

  • Brandes, E., K. Ikeda, G. Zhang, M. Schoenhuber, and R. Rasmussen, 2007: A statistical and hysical description of hydrometeor distributions in Colorado snowstorms using a video istrometer. J. Appl. Meteor. Climatol., 46, 634–650.

    Article  Google Scholar 

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430.

    Article  Google Scholar 

  • Chen, R. Y., F. L. Chang, Z. Q. Li, R. Ferraro, and F. Z. Weng, 2007: Impact of the vertical variation of cloud droplet size on the estimation of cloud liquid water path and rain detection. J. Atmos. Sci., 64, 3843–3853.

    Article  Google Scholar 

  • Cohard, J. M., and J. P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: De scription and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842.

    Article  Google Scholar 

  • Cohard, J. M., J. P. Pinty, and C. Bedos, 1998: Extending Twomey’s analytical estimate of nucleated cloud droplet concentration from CCN spectra. J. Atmos. Sci., 55, 3348–3357.

    Article  Google Scholar 

  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Feingold, G., B. Stevens, W. R. Cotton, and R. L. Walko, 1994: An explicit cloud microphysical/LES model designed to simulate the Twomey effect. Atmospheric Research, 33, 207–233.

    Article  Google Scholar 

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.

    Article  Google Scholar 

  • Fletcher. N. H., 1962: Physics of Rain Clouds. Cambridge University Press, 386pp.

  • Fowler, L. D., D. A. Randall, and S. A. Rutledge, 1996: Liquid and ice microphysics in the CSU General Circulation Model. Part 1: Model description and simulated microphysical processes. J. Climate, 9, 489–529.

    Article  Google Scholar 

  • Gao, W. H., 2008: Numerical study of the effects of aerosols on clouds and precipitation. Ph.D. dissertation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 77–80. (in Chinese)

  • Ghan, S. J., L. R. Leung, and Q. Hu, 1997a: Application of cloud microphysics to NCAR CCM2. J. Geophys. Res., 102, 16507–16527.

    Article  Google Scholar 

  • Ghan, S. J., L. R. Leung, and R. C. Easter, 1997b: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 21777–21794.

    Article  Google Scholar 

  • Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627.

    Article  Google Scholar 

  • Guo, X., M. Huang, Y. Hong, H. Xiao, and L. Zhou, 2001: A study of three-dimensional hail-category hailstorm model: Part I: Model description and the mechanism of hail recirculation growth. Chinese J. Atmos. Sci., 25(5), 707–720. (in Chinese)

    Google Scholar 

  • Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using doublemoment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 4344–4366.

    Article  Google Scholar 

  • Hobbs, P.V., 1993: Aerosol-Cloud-Climate Interactions. Academic Press Inc., 14pp.

  • Hong, S.-Y., and K.-S. Lim, 2009: The WRF Double-Moment Cloud Microphysics Scheme (WDM). The 10th WRF User’s Workshop, Boulder, U. S. A., 23–26 June.

  • Hu, Z. J., and L. Cai, 1979: A parameterized numerical simulation of warm rain and salt-seeding in cumulus clouds. Scientia Atmospheric Sinica, 3(4), 334–342. (in Chinese)

    Google Scholar 

  • Hu, Z. J., and G. He, 1988: Numerical simulation of microphysical processes in cumulonimbus, Part 1: Microphysical model. Acta Meteorologica Sinica, 2(4), 471–489.

    Google Scholar 

  • Hu, Z. J., and G. He, 1989: Numerical simulation of microphysical processes in cumulonimbus, Part 2: Case studies of shower, hailstorm and torrential rain. Acta Meteorologica Sinica, 3(2), 185–199.

    Google Scholar 

  • Hu, Z. J., C. Yan, and Y. Wang, 1983: Numerical simulation of rain and seeding processes in warm layer clouds. Acta Meteorologica Sinica, 41(1), 79–88. (in Chinese)

    Google Scholar 

  • Huffman, P. J., 1973: Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteor., 12, 1080–1082.

    Article  Google Scholar 

  • Jiang, H., G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy simulation of entrainment of cloud condensation nuclei into the arctic boundary layer: May 18, 1998 FIRE/SHEBA case study. J. Geophys. Res., 106, 15113–15122.

    Article  Google Scholar 

  • Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Note on the state-of-theart numerical modeling of cloud microphysics. Atmospheric Research, 55, 159–224.

    Article  Google Scholar 

  • Khvorostyanov, V. I., and J. A. Curry, 2000: A new theory of heterogeneous ice nucleation for application in cloud and climate models. Geophys. Res. Lett., 27, 4081–4084.

    Article  Google Scholar 

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.

    Article  Google Scholar 

  • Kong, F., M. Huang, and H. Xu, 1990: Numerical simulation of the ice phase process in convective cloud (1) Model and the parameterization of cold-cloud. Chinese J. Atmos. Sci., 14(4), 441–453. (in Chinese)

    Google Scholar 

  • Li, X., W.-K. Tao, A. Khain, J. Simpson, and D. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit-bin microphysics schemes: Part I: Comparisons. J. Atmos. Sci., 66, 3–21.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Lohmann, U., N. McFarlane, L. Levkov, K. Abdella, and F. Albers, 1999: Comparing different cloud schemes of a single column model by using mesoscale forcing and nudging technique. J. Climate, 12, 438–461.

    Article  Google Scholar 

  • Lou, X., 2002: Development and implementation of a new explicit microphysical scheme and comparisons of original schemes of MM5. Ph.D. dissertation, Department of Atmospheric Science, Peking University. (in Chinese)

  • Lou, X., Z. Hu, Y. Shi, P. Wang, and X. Zhou, 2003: Numerical simulations of a heavy rainfall case in south China. Adv. Atmos. Sci., 20(1), 128–138.

    Google Scholar 

  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823–1842.

    Article  Google Scholar 

  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice nucleation parameterization in an explicit model. J. Appl. Meteor., 31, 708–721.

    Article  Google Scholar 

  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmospheric Research, 45, 3–39.

    Article  Google Scholar 

  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065–3081.

    Article  Google Scholar 

  • Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63, 3137–3159.

    Article  Google Scholar 

  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665–1677.

    Article  Google Scholar 

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.

    Article  Google Scholar 

  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers, 954pp.

  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 forecast model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.

    Article  Google Scholar 

  • Saleeby, S. M., and W. R. Cotton, 2004: Large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. J. Appl. Meteor., 43, 182–195.

    Article  Google Scholar 

  • Seifert, A., and K. D. Beheng, 2006a: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 45–66.

    Article  Google Scholar 

  • Seifert, A., and K. D. Beheng, 2006b: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs continental deep convective storms. Meteor. Atmos. Phys., 92, 67–82.

    Article  Google Scholar 

  • Shi, Y., X. Lou, X. Deng, Z. Hu, and X. Zhou, 2008: Simulations of mesoscale and microphysical characteristics of cold front clouds in South China. Chinese J. Atmos. Sci., 32(5), 1019–1036. (in Chinese)

    Google Scholar 

  • Skamarock, W. C, and Coauthors, 2008: A description of the advanced research WRF version 3. [Available from: http://www.mmm.ucar.edu/wrf/users/docs/arwv3.pdf.]

  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006.

    Article  Google Scholar 

  • Sun, J., X. Lou, Z. Hu, and X. Shen, 2008: Numerical experiment of the coupling of CAMS complex? Microphysical scheme and GRAPES model. Journal of Applied Meteorological Science, 19(3), 315–325. (in Chinese)

    Google Scholar 

  • Suzuki, K., T. Nakajima, N. Atusi, T. Takemura, K. Kawamoto, and A. Higurashi, 2004: A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation. J. Atmos. Sci., 61, 179–194.

    Article  Google Scholar 

  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Article  Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part 1: Model description. Terrestrial, Atmospheric and Oceanic Sciences, 4, 35–72.

    Google Scholar 

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.

    Article  Google Scholar 

  • van den Heever, S. C., and W.R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 1596–1609.

    Article  Google Scholar 

  • Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington, 1995: New RAMS cloud microphysics parameterization. Part I: The single-moment scheme. Atmospheric Research, 38, 29–62.

    Article  Google Scholar 

  • Xu, H., and S. Wang, 1985: A numerical model of hailbearing convective Cloud (1): Biparameter evolution of size distribution of raindrops, frozen raindrops and hailstones. Acta Meteorologica Sinica, 43(1), 13–25. (in Chinese)

    Google Scholar 

  • Yin, Y., Z. Levin, T. G. Reisin, and S. Tzivion, 2000: The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—A numerical study. Atmospheric Research, 53, 91–116.

    Article  Google Scholar 

  • Yuan, T., Z. Q. Li, R. Zhang, and J. Fan, 2008: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. J. Geophys. Res., 113, D04201.

    Article  Google Scholar 

  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Gao  (高文华).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, W., Zhao, F., Hu, Z. et al. A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results. Adv. Atmos. Sci. 28, 1184–1200 (2011). https://doi.org/10.1007/s00376-010-0087-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-0087-z

Key words

Navigation