Skip to main content

Advertisement

Log in

Genealogy with seasonality, the basic reproduction number, and the influenza pandemic

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The basic reproduction number R 0 has been used in population biology, especially in epidemiology, for several decades. But a suitable definition in the case of models with periodic coefficients was given only in recent years. The definition involves the spectral radius of an integral operator. As in the study of structured epidemic models in a constant environment, there is a need to emphasize the biological meaning of this spectral radius. In this paper we show that R 0 for periodic models is still an asymptotic per generation growth rate. We also emphasize the difference between this theoretical R 0 for periodic models and the “reproduction number” obtained by fitting an exponential to the beginning of an epidemic curve. This difference has been overlooked in recent studies of the H1N1 influenza pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronsson G, Kellogg RB (1978) On a differential equation arising from compartmental analysis. Math Biosci 38: 113–122

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53: 421–436

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N (2007) Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bull Math Biol 69: 1067–1091

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N, Ouifki R (2007) Growth rate and basic reproduction number for population models with a simple periodic factor. Math Biosci 210: 647–658

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N, Abdurahman X (2008) Resonance of the epidemic threshold in a periodic environment. J Math Biol 57: 649–673

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N, Gomes MGM (2009) On the final size of epidemics with seasonality. Bull Math Biol 71: 1954–1966

    Article  MATH  MathSciNet  Google Scholar 

  • Bacaër N (2009) Periodic matrix population models: growth rate, basic reproduction number, and entropy. Bull Math Biol 71: 1781–1792

    Article  MATH  MathSciNet  Google Scholar 

  • Bapat RB, Raghavan TES (1997) Nonnegative matrices and applications. Cambridge University Press, London

    Book  MATH  Google Scholar 

  • Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, New York

    MATH  Google Scholar 

  • Boëlle PY, Bernillon P, Desenclos JC (2009) A preliminary estimation of the reproduction ratio for new influenza A (H1N1) from the outbreak in Mexico, March–April 2009. Euro Surveill 14(19):pii=19205

    Google Scholar 

  • Burlando L (1991) Monotonicity of spectral radius for positive operators on ordered Banach spaces. Arch Math 56: 49–57

    Article  MATH  MathSciNet  Google Scholar 

  • Cauchemez S, Valleron AJ, Boelle PY, Flahault A, Ferguson NM (2008) Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452(7188): 750–754

    Article  Google Scholar 

  • Coale AJ (1970) The use of Fourier analysis to express the relation between time variations in fertility and the time sequence of births in a closed human population. Demography 7: 93–120

    Article  Google Scholar 

  • Coale AJ (1972) The growth and structure of human populations, a mathematical investigation. Princeton University Press, Princeton

    Google Scholar 

  • Degla G (2008) An overview of semi-continuity results on the spectral radius and positivity. J Math Anal Appl 338: 101–110

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Wiley, Chichester

    Google Scholar 

  • Drábek P, Milota J (2007) Methods of nonlinear analysis applications to differential equations. Birkhäuser, Basel

    MATH  Google Scholar 

  • Drnovšek R (2000) Bounds for the spectral radius of positive operators. Comment Math Univ Carol 41: 459–467

    MATH  Google Scholar 

  • Dushoff J, Plotkin JB, Levin SA, Earn DJD (2004) Dynamical resonance can account for seasonality of influenza epidemics. Proc Natl Acad Sci USA 101: 16915–16916

    Article  Google Scholar 

  • Ediev D (2003) On monotone convergence to stability. Demogr Res 8: 31–60

    Article  Google Scholar 

  • Feller W (1941) On the integral equation of renewal theory. Ann Math Stat 12: 243–267

    Article  MATH  MathSciNet  Google Scholar 

  • Fraser C, Donnelly CA, Cauchemez S et al (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324: 1557–1561

    Article  Google Scholar 

  • Grassly NC, Fraser C (2006) Seasonal infectious disease epidemiology. Proc R Soc B 273: 2541–2550

    Article  Google Scholar 

  • Heesterbeek JAP, Roberts MG (1995) Threshold quantities for helminth infections. J Math Biol 33: 415–434

    Article  MATH  MathSciNet  Google Scholar 

  • Inaba H, Nishiura H (2008) The basic reproduction number of an infectious disease in a stable population: the impact of population growth rate on the eradication threshold. Math Model Nat Phenom 3(7): 194–228

    Article  MathSciNet  Google Scholar 

  • Jagers P, Nerman O (1985) Branching processes in periodically varying environment. Ann Probab 13: 254–268

    Article  MATH  MathSciNet  Google Scholar 

  • Kato T (1982) Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math Z 180: 265–273

    Article  MATH  MathSciNet  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. Proc R Soc A 115: 700–721

    Article  Google Scholar 

  • Kress R (1999) Linear integral equations, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Lipsitch M, Viboud C (2009) Influenza seasonality: lifting the fog. Proc Natl Acad Sci USA 106: 3645–3646

    Article  Google Scholar 

  • Lotka AJ (1939) Théorie analytique des associations biologiques, 2e partie. Hermann, Paris

    Google Scholar 

  • Michel P, Mischler S, Perthame B (2005) General relative entropy inequality: an illustration on growth models. J Math Pures Appl 84: 1235–1260

    Article  MATH  MathSciNet  Google Scholar 

  • Munayco CV, Gomez J, Laguna-Torres VA et al (2009) Epidemiological and transmissibility analysis of influenza A(H1N1)v in a southern hemisphere setting: Peru. Euro Surveill 14(32 pii): 19299

    Google Scholar 

  • Nakata Y, Kuniya T (2010) Global dynamics of a class of SEIRS epidemic models in a periodic environment. J Math Anal Appl 363: 230–237

    Article  MATH  MathSciNet  Google Scholar 

  • Nishiura H, Castillo-Chavez C, Safan M, Chowell G (2009) Transmission potential of the new influenza A (H1N1) virus and its age-specificity in Japan. Euro Surveill 14(22): pii–19227

    Google Scholar 

  • Perthame B (2007) Transport equations in biology. Birhäuser, Basel

    MATH  Google Scholar 

  • Pourbohloul B, Ahued A, Davoudi B et al (2009) Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respi Viruses 3(5): 215–222

    Article  Google Scholar 

  • Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci USA 106: 3243–3248

    Article  Google Scholar 

  • Thieme HR (1984) Renewal theorems for linear periodic Volterra integral equations. J Integral Equ 7: 253–277

    MATH  MathSciNet  Google Scholar 

  • Thieme HR (1998) Remarks on resolvent positive operators and their perturbation. Discret Contin Dyn Syst 4: 73–90

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme HR (2009) Spectral bound and reproduction number for infinite population structure and time-heterogeneity. SIAM J Appl Math 70: 188–211

    Article  MATH  MathSciNet  Google Scholar 

  • Wang W, Zhao XQ (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20: 699–717

    Article  MATH  Google Scholar 

  • Wesley CL, Allen LJS (2009) The basic reproduction number in epidemic models with periodic demographics. J Biol Dyn 3: 116–129

    Article  MathSciNet  Google Scholar 

  • Williams BG, Dye C (1997) Infectious disease persistence when transmission varies seasonally. Math Biosci 145: 77–88

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bacaër.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacaër, N., Ait Dads, E.H. Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011). https://doi.org/10.1007/s00285-010-0354-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-010-0354-8

Keywords

Mathematics Subject Classification (2000)

Navigation