Skip to main content

Advertisement

Log in

Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Vx-001, an HLA-A*0201 restricted telomerase (TERT)-specific anti-tumor vaccine, is composed of the 9-mer cryptic TERT572 peptide and its optimized variant TERT572Y. We have previously shown that Vx-001 is non-toxic, highly immunogenic and in vaccinated NSCLC patients early specific immune response is associated with prolonged survival. The aim of the present study was to investigate the specific T-cell immune response against Vx-001. Fifty-five patients with chemo-resistant advanced solid tumors were vaccinated with TERT572Y (2 subcutaneous injections) followed by TERT572 peptide (4 subcutaneous injections) every 3 weeks. Specific immune response was evaluated by IFN-γ and perforin ELISpot and intracellular cytokine staining assays. TERT-reactive T cells were detected in 27 (51%) out of 53 evaluable patients after the 2nd vaccination and in 22 (69%) out of 32 evaluable patients after the completion of 6 vaccinations. Immune responses developed irrespective of the stage of disease and disease status before vaccination. Patients with disease progression at study entry who developed a post-vaccination-induced immunological response had a significant overall survival benefit compared to the post-vaccination non-responders. The Vx-001 vaccine is a promising candidate for cancer immunotherapy since it can induce a TERT-specific T-cell immune response that is associated with prolonged survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U (2003) Natural T cell immunity against cancer. Clin Cancer Res 9:4296–4303

    PubMed  CAS  Google Scholar 

  2. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  3. van der Bruggen P, Zhang Y, Chaux P et al (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Article  Google Scholar 

  4. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  PubMed  CAS  Google Scholar 

  5. Kim NW, Piatyszek MA, Prowse KR et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  6. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  PubMed  CAS  Google Scholar 

  7. Hahn WC, Stewart SA, Brooks MW et al (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164–1170

    Article  PubMed  CAS  Google Scholar 

  8. Robbins PF, Kawakami Y (1996) Human tumor antigens recognized by T cells. Curr Opin Immunol 8:628–636

    Article  PubMed  CAS  Google Scholar 

  9. Van PA, van der BP, Coulie PG et al (1995) Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev 145:229–250

    Article  Google Scholar 

  10. Tourdot S, Scardino A, Saloustrou E et al (2000) A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol 30:3411–3421

    Article  PubMed  CAS  Google Scholar 

  11. Gross DA, Graff-Dubois S, Opolon P et al (2004) High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 113:425–433

    PubMed  CAS  Google Scholar 

  12. Scardino A, Gross DA, Alves P et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906

    PubMed  CAS  Google Scholar 

  13. Hernandez J, Garcia-Pons F, Lone YC et al (2002) Identification of a human telomerase reverse transcriptase peptide of low affinity for HLA A2.1 that induces cytotoxic T lymphocytes and mediates lysis of tumor cells. Proc Natl Acad Sci USA 99:12275–12280

    Article  PubMed  CAS  Google Scholar 

  14. Mavroudis D, Bolonakis I, Cornet S et al (2006) A phase I study of the optimized cryptic peptide TERT(572y) in patients with advanced malignancies. Oncology 70:306–314

    Article  PubMed  CAS  Google Scholar 

  15. Bolonaki I, Kotsakis A, Papadimitraki E et al (2007) Vaccination of patients with advanced non-small-cell lung cancer with an optimized cryptic human telomerase reverse transcriptase peptide. J Clin Oncol 25:2727–2734

    Article  PubMed  CAS  Google Scholar 

  16. Meijer SL, Dols A, Jensen SM et al (2007) Induction of circulating tumor-reactive CD8+ T cells after vaccination of melanoma patients with the gp100 209–2 M peptide. J Immunother 30:533–543

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  18. Parkhurst MR, Salgaller ML, Southwood S et al (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548

    PubMed  CAS  Google Scholar 

  19. Valmori D, Fonteneau JF, Lizana CM et al (1998) Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160:1750–1758

    PubMed  CAS  Google Scholar 

  20. Bercovici N, Haicheur N, Massicard S et al (2008) Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 31:101–112

    Article  PubMed  Google Scholar 

  21. Zuber B, Levitsky V, Jonsson G et al (2005) Detection of human perforin by ELISpot and ELISA: ex vivo identification of virus-specific cells. J Immunol Methods 302:13–25

    Article  PubMed  CAS  Google Scholar 

  22. De Vries IJM, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  23. Slingluff CL Jr, Petroni GR, Yamshchikov GV et al (2004) Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 22:4474–4485

    Article  PubMed  CAS  Google Scholar 

  24. Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP (1999) Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J Immunol 162:3273–3279

    PubMed  CAS  Google Scholar 

  25. Aruga A, Aruga E, Tanigawa K, Bishop DK, Sondak VK, Chang AE (1997) Type 1 versus type 2 cytokine release by Vbeta T cell subpopulations determines in vivo antitumor reactivity: IL-10 mediates a suppressive role. J Immunol 159:664–673

    PubMed  CAS  Google Scholar 

  26. Lattime EC, Mastrangelo MJ, Bagasra O, Li W, Berd D (1995) Expression of cytokine mRNA in human melanoma tissues. Cancer Immunol Immunother 41:151–156

    Article  PubMed  CAS  Google Scholar 

  27. Yang AS, Lattime EC (2003) Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63:2150–2157

    PubMed  CAS  Google Scholar 

  28. Gabriel EM, Lattime EC (2007) Anti-CTL-associated antigen 4: are regulatory T cells a target? Clin Cancer Res 13:785–788

    Article  PubMed  Google Scholar 

  29. Hodi FS, Mihm MC, Soiffer RJ et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717

    Article  PubMed  CAS  Google Scholar 

  30. Korman A, Yellin M, Keler T (2005) Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr Opin Investig Drugs 6:582–591

    PubMed  CAS  Google Scholar 

  31. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    Article  PubMed  CAS  Google Scholar 

  32. Phan GQ, Yang JC, Sherry RM et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  33. Sun J, Schiffman J, Raghunath A, Ng TD, Chen H, Sharma P (2008) Concurrent decrease in IL-10 with development of immune-related adverse events in a patient treated with anti-CTLA-4 therapy. Cancer Immun 8:9

    PubMed  Google Scholar 

  34. Ling KL, Pratap SE, Bates GJ et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed  Google Scholar 

  35. O’Mahony D, Morris JC, Quinn C et al (2007) A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin Cancer Res 13:958–964

    Article  PubMed  Google Scholar 

  36. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  PubMed  CAS  Google Scholar 

  37. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  38. Yamaguchi T, Sakaguchi S (2006) Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16:115–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Cretan Association for Biomedical Research.

Conflict of interest

K. Kosmatopoulos and J. Menez-Jamet are employees and shareholders of Vaxon Biotech. All the other authors have no potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni-Kyriaki Vetsika.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetsika, EK., Konsolakis, G., Aggouraki, D. et al. Immunological responses in cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001. Cancer Immunol Immunother 61, 157–168 (2012). https://doi.org/10.1007/s00262-011-1093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1093-4

Keywords

Navigation