Skip to main content

Advertisement

Log in

Her-2/neu altered peptide ligand–induced CTL responses: implications for peptides with increased HLA affinity and T-cell-receptor interaction

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In this study, we developed two Her-2/neu-derived E75 altered peptide ligands (APLs) that demonstrate increased affinities for the HLA-A*0201 allele compared with wild-type E75 peptide. The APLs contain amino acids from E75(369–377), an immunodominant Her-2/neu-derived peptide, and preferred primary and auxiliary HLA-A*0201 molecule anchor residues previously identified from combinatorial peptide library screening with the recombinant molecule. CTL lines were generated against wild-type E75 peptide (KIFGSLAFL) and APLs by multiple rounds of peptide stimulation of peripheral blood mononuclear cells (PBMCs) from HLA-A2+ antigen normal individuals. CTL lines raised on wild-type E75 peptide cross-reacted with APLs and similarly, CTL lines raised on APLs cross-reacted with wild-type E75 peptide, as measured by IFN-γ ELISpot and target cell lysis assays. One of five individuals demonstrated specificity for APL 2 (FLFGSLAFL), whereas APL 5 (FLFESLAFL)-specific responses were observed from all five individuals tested. Molecular models of the E75, APL 2, and APL 5/HLA-A2 complexes indicated that the substitution of glycine with glutamic acid at position four of APL 5 resulted in the presentation of a large, negatively charged side chain that interacts with the outer edge of the HLA-A2 antigen alpha helix and is freely available to interact with cognate T-cell receptors. The results of this study further substantiate the concept that rational design of T-cell epitopes may lead to stronger peptide immunogens than natural, wild-type peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C
Fig. 2A–C
Fig. 3A–C

Similar content being viewed by others

References

  1. Niehans GA, Singleton TP, Dykoski D, Kiang DT (1993) Stability of HER-2/neu expression over time and at multiple metastatic sites. J Natl Cancer Inst 85:1230

    CAS  PubMed  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177

    CAS  PubMed  Google Scholar 

  3. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707

    CAS  PubMed  Google Scholar 

  4. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109

    CAS  PubMed  Google Scholar 

  5. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ (1995) Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci U S A 92:432

    CAS  PubMed  Google Scholar 

  6. Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732

    CAS  PubMed  Google Scholar 

  7. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102

    CAS  PubMed  Google Scholar 

  8. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477

    CAS  PubMed  Google Scholar 

  9. Murray JL, Gillogly ME, Przepiorka D, Brewer H, Ibrahim NK, Booser DJ, Hortobagyi GN, Kudelka AP, Grabstein KH, Cheever MA, Ioannides CG (2002) Toxicity, immunogenicity, and induction of E75-specific tumor-lytic CTLs by HER-2 peptide E75 (369–377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 8:3407

    CAS  PubMed  Google Scholar 

  10. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014

    CAS  Google Scholar 

  11. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290

    CAS  PubMed  Google Scholar 

  12. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261

    CAS  PubMed  Google Scholar 

  13. Parker KC, Bednarek MA, Hull LK, Utz U, Cunningham B, Zweerink HJ, Biddison WE, Coligan JE (1992) Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 149:3580

    CAS  PubMed  Google Scholar 

  14. Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74:929

    CAS  PubMed  Google Scholar 

  15. Kast WM, Brandt RM, Sidney J, Drijfhout JW, Kubo RT, Grey HM, Melief CJ, Sette A (1994) Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol 152:3904

    CAS  PubMed  Google Scholar 

  16. Pogue RR, Eron J, Frelinger JA, Matsui M (1995) Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc Natl Acad Sci U S A 92:8166

    CAS  PubMed  Google Scholar 

  17. Smith MH, Nuara AA, Egen JG, Sirjani DB, Lam KS, Grimes WJ (1998) Baculoviral expressed HLA class I heavy chains used to screen a synthetic peptide library for allele-specific peptide binding motifs. Mol Immunol 35:1033

    Article  CAS  PubMed  Google Scholar 

  18. Sette A, Vitiello A, Reherman B, Fowler P, Nayersina R, Kast WM, Melief CJ, Oseroff C, Yuan L, Ruppert J et al (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153:5586

    CAS  PubMed  Google Scholar 

  19. Feltkamp MC, Vierboom MP, Kast WM, Melief CJ (1994) Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol Immunol 31:1391

    Article  CAS  PubMed  Google Scholar 

  20. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934

    CAS  PubMed  Google Scholar 

  21. Sigal LJ, Goebel P, Wylie DE (1995) Db-binding peptides from influenza virus: effect of non-anchor residues on stability and immunodominance. Mol Immunol 32:623

    Article  CAS  PubMed  Google Scholar 

  22. van der Burg SH, Ras E, Drijfhout JW, Benckhuijsen WE, Bremers AJ, Melief CJ, Kast WM (1995) An HLA class I peptide-binding assay based on competition for binding to class I molecules on intact human B cells: identification of conserved HIV-1 polymerase peptides binding to HLA-A*0301. Hum Immunol 44:189

    PubMed  Google Scholar 

  23. Dionne SO, Smith MH, Marincola FM, Lake DF (2003) Functional characterization of CTL against gp100 altered peptide ligands. Cancer Immunol Immunother 52:199

    CAS  PubMed  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235

    PubMed  Google Scholar 

  25. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714

    CAS  PubMed  Google Scholar 

  26. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163

    CAS  PubMed  Google Scholar 

  27. Castilleja A, Carter D, Efferson CL, Ward NE, Kawano K, Fisk B, Kudelka AP, Gershenson DM, Murray JL, O’Brian CA, Ioannides CG (2002) Induction of tumor-reactive CTL by C-side chain variants of the CTL epitope HER-2/neu protooncogene (369–377) selected by molecular modeling of the peptide: HLA-A2 complex. J Immunol 169:3545

    CAS  PubMed  Google Scholar 

  28. Kuhns JJ, Batalia MA, Yan S, Collins EJ (1999) Poor binding of a HER-2/neu epitope (GP2) to HLA-A2.1 is due to a lack of interactions with the center of the peptide. J Biol Chem 274:36422

    Article  CAS  PubMed  Google Scholar 

  29. Sharma AK, Kuhns JJ, Yan S, Friedline RH, Long B, Tisch R, Collins EJ (2001) Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts. J Biol Chem 276:21443

    Article  CAS  PubMed  Google Scholar 

  30. Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A (2001) Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 167:787

    CAS  PubMed  Google Scholar 

  31. Rivoltini L, Kawakami Y, Sakaguchi K, Southwood S, Sette A, Robbins PF, Marincola FM, Salgaller ML, Yannelli JR, Appella E et al (1995) Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 154:2257

    CAS  PubMed  Google Scholar 

  32. Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1

    Article  Google Scholar 

  33. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902

    CAS  PubMed  Google Scholar 

  34. Yang S, Linette GP, Longerich S, Haluska FG (2002) Antimelanoma activity of CTL generated from peripheral blood mononuclear cells after stimulation with autologous dendritic cells pulsed with melanoma gp100 peptide G209-2M is correlated to TCR avidity. J Immunol 169:531

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Sue Roberts for her contributions to the molecular modeling of HLA-A2/peptide complexes. This study was supported by a National Cancer Institute grant, RO1 CA94852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas F. Lake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dionne, S.O., Myers, C.E., Smith, M.H. et al. Her-2/neu altered peptide ligand–induced CTL responses: implications for peptides with increased HLA affinity and T-cell-receptor interaction. Cancer Immunol Immunother 53, 307–314 (2004). https://doi.org/10.1007/s00262-003-0439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0439-y

Keywords

Navigation