Skip to main content

Advertisement

Log in

Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial biofilms contribute to biofouling in a wide range of processes from medical implants to processed food. The extracellular polymeric substances (EPS) are implicated in imparting biofilms with structural stability and resistance to cleaning products. Still, very little is known about the structural role of the EPS in Gram-positive systems. Here, we have compared the cell surface and EPS of surface-attached (biofilm) and free-floating (planktonic) cells of Bacillus cereus, an organism routinely isolated from within biofilms on different surfaces. Our results indicate that the surface properties of cells change during biofilm formation and that the EPS proteins function as non-specific adhesions during biofilm formation. The physicochemical traits of the cell surface and the EPS proteins give us an insight into the forces that drive biofilm formation and maintenance in B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Absolom DR, Lamberti FV, Policova Z, Zingg W, Van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46:90

    CAS  Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  CAS  Google Scholar 

  • Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256

    CAS  Google Scholar 

  • Auger S, Krin E, Aymerich S, Gohar M (2006) Autoinducer 2 affects biofilm formation by Bacillus cereus. Appl Environ Microbiol 72:937

    Article  CAS  Google Scholar 

  • Bellon-Fontaine MN, Mozes N, van der Mei HC, Sjollema J, Cerf O, Rouxhet PG, Busscher HJ (1990) A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biophys 17:93

    CAS  Google Scholar 

  • Bos R, Van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    CAS  Google Scholar 

  • Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O (2006) Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl Microbiol Biotechnol 71:736–747

    Article  CAS  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH (1987) Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol Lett 46:165–173

    Article  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH, Van der Mei HC, Van Pelt AW, De Jong HP, Arends J (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48:980

    CAS  Google Scholar 

  • Gan CS, Reardon KF, Wright PC (2005) Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 5:2468–2478

    Article  CAS  Google Scholar 

  • Chen X, Stewart PS (2002) Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 59:718–720

    Article  CAS  Google Scholar 

  • Costerton JW (1995) Overview of microbial biofilms. J Ind Microbiol Biotechnol 15:137–140

    CAS  Google Scholar 

  • Costerton JW (2007) The biofilm primer. Springer, Heidelberg

    Book  Google Scholar 

  • Costerton JW, Davies DG, Stoodley P (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Google Scholar 

  • Davies DG, Chakrabarty AM, Geesey GG (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59:1181

    CAS  Google Scholar 

  • Eboigbodin KE, Biggs CA (2008) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules 9:686–695

    Article  CAS  Google Scholar 

  • Eboigbodin KE, Odeja JJ, Biggs CA (2007) Investigating the surface properties of Escherichia coli under glucose controlled conditions and its effect on aggregation. Langmuir 23:6691–6697

    Article  CAS  Google Scholar 

  • Ezzell JW, Welkos SL (1999) The capsule of Bacillus anthracis. J Appl Microbiol 87:250–250

    Article  Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—Part II: technical aspects. Water Sci Technol 43:9–16

    CAS  Google Scholar 

  • Flemming HC, Wingender J (2003) The crucial role of extracellular polymeric substances in biofilms. Biofilms in wastewater treatment. IWA Publishing, London, pp 178–210

    Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the" house of biofilm cells". J Bacteriol 189:7945

    Article  CAS  Google Scholar 

  • Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    Article  CAS  Google Scholar 

  • Geoghegan M, Andrews JS, Biggs CA, Eboigbodin KE, Elliott DR, Rolfe S, Scholes J, Ojeda JJ, Romero-González ME, Edyvean RGJ (2008) The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discuss 139:85–103

    Article  CAS  Google Scholar 

  • Gohar M, Økstad OA, Gilois N, Sanchis V, Kolstø AB, Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2:784–791

    Article  CAS  Google Scholar 

  • Hayashi H, Seiki H, Tsuneda S, Hirata A, Sasaki H (2003) Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory. J Colloid Interface Sci 264:565–568

    Article  CAS  Google Scholar 

  • Hong Y, Brown DG (2008) Electrostatic behavior of the charge-regulated bacterial cell surface. Langmuir ACS Journal Surfaces Colloids 24:5003

    CAS  Google Scholar 

  • Hsueh YH, Somers EB, Lereclus D, Wong ACL (2006) Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator. Appl Environ Microbiol 72:5089

    Article  CAS  Google Scholar 

  • Kotiranta A, Haapasalo M, Kari K, Kerosuo E, Olsen I, Sorsa T, Meurman JH, Lounatmaa K (1998) Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect Immun 66:4895

    CAS  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  CAS  Google Scholar 

  • Krekeler C, Ziehr H, Klein J (1989) Physical methods for characterization of microbial cell-surfaces. Experientia 45:1047–1055

    Article  CAS  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175

    CAS  Google Scholar 

  • Makin SA, Beveridge TJ (1996) The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142:299

    Article  CAS  Google Scholar 

  • Marshall KC (1976) Interfaces in microbial ecology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    Article  CAS  Google Scholar 

  • McKay AL, Peters AC, Wimpenny JWT (1997) Determining specific growth rates in different regions of Salmonella typhimurium colonies. Lett Appl Microbiol 24:74–76

    Article  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473

    Article  CAS  Google Scholar 

  • Mignot T, Denis B, Couture-Tosi E, Kolsto AB, Mock M, Fouet A (2001) Distribution of S-layers on the surface of Bacillus cereus strains: phylogenetic origin and ecological pressure. Environ Microbiol 3:493–501

    Article  CAS  Google Scholar 

  • Naumann D (2000) Infrared spectroscopy in microbiology. Encyclopedia of Analytical Chemistry 102

  • Navarre WW, Schneewind O (2006) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14:115–121

    Article  Google Scholar 

  • Neu TR, Marshall KC (1990) Bacterial polymers: physicochemical aspects of their interactions at interfaces. J Biomater Appl 5:107–133

    Article  CAS  Google Scholar 

  • Odeja JJ, Romero-Gonzalez ME, Bachmann RT, Edyvean RGJ, Banwart SA (2008) Characterization of cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, Modeling and Potentiometric titrations. Langmuir 24

  • Omoike A, Chorover J (2004) Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biomacromolecules 5:1219–1230

    Article  CAS  Google Scholar 

  • Oosthuizen M, Steyn B, Lindsay D, Brozel VS, von Holy A (2001) Novel method for the proteomic investigation of a dairy-associated Bacillus cereus bio¢ lm. FEMS Microbiol Lett 194:47–51

    Article  CAS  Google Scholar 

  • O'Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  Google Scholar 

  • Peng JS, Tsai WC, Chou CC (2002) Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int J Food Microbiol 77:11–18

    Article  CAS  Google Scholar 

  • Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2001) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464

    Article  Google Scholar 

  • Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977

    Article  CAS  Google Scholar 

  • Rijnaarts HHM, Norde W, Lyklema J, Zehnder AJB (1995) The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf, B 4:191–197

    Article  CAS  Google Scholar 

  • Rosenberg M (2006) Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 262:129–134

    Article  CAS  Google Scholar 

  • Rosenberg M, Gutnick MD, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Rutter PR, Vincent B, Marshall KC (1984) Physicochemical interactions of the substratum, microorganisms, and the fluid phase. Springer, Heidelberg, p. 21

    Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Sonohara R, Muramatsu N, Ohshima H, Kondo T (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 55:273–277

    Article  CAS  Google Scholar 

  • Tahmourespour A, Kasra Kermanshahi R, Salehi Rasoul N (2008) The relationship between cell surface hydrophobicity and antibiotic resistance of streptococcal strains isolated from dental plaque and caries. IJBMS 10:251–255

    Google Scholar 

  • Thwaite JE, Laws TR, Atkins TP, Atkins HS (2009) Differential cell surface properties of vegetative Bacillus. Lett Appl Microbiol 48:373–378

    Article  CAS  Google Scholar 

  • Tourasse NJ, Stabell FB, Reiter L, Kolsto AB (2005) Unusual group II introns in bacteria of the Bacillus cereus group. J Bacteriol 187:5437

    Article  CAS  Google Scholar 

  • van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987a) Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

    Google Scholar 

  • Van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987b) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893

    Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1989) Bacterial adhesion: a physicochemical approach. Microb Ecol 17:1–15

    Article  Google Scholar 

  • Wang X, Preston Iii JF, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2724

    Article  CAS  Google Scholar 

  • Wilén B-M, Jin B, Lant P (2003) The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res 37:2127–2139

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the UK Engineering and Physical Sciences Research Council for a studentship for Karunakaran, Advanced Research Fellowship for Biggs (EP/E053556/01) and further project funding (EP/E053556/01 and EP/E036252/1) and The University of Sheffield for a fee scholarship. The authors also wish to thank Dr. S. Ow for technical assistance and Dr. M. Salim, Dr. H. Jensen and Dr. J. Mukherjee for useful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Biggs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Cytoplasmic proteins identified in the EPS of ATCC 10987 and ATCC 14579 when grown in LB at 30°C for 24 h (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunakaran, E., Biggs, C.A. Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins. Appl Microbiol Biotechnol 89, 1161–1175 (2011). https://doi.org/10.1007/s00253-010-2919-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2919-2

Keywords

Navigation