Skip to main content
Log in

Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Previously we have shown that human red blood cells (RBCs) undergo a sudden change from blocking to passing through a 1.3±0.2-µm micropipette when applying an aspiration pressure of 2.3 kPa at a critical transition temperature (T c=36.4±0.3 °C). Low-shear viscosity measurements suggested that changes in the molecular properties of hemoglobin might be responsible for this effect. To evaluate structural changes in hemoglobin at the critical temperature, we have used circular dichroism (CD) spectroscopy. The thermal denaturation curves of human hemoglobin A (HbA) and hemoglobin S (HbS) upon heating between 25 and 60 °C were non-linear and showed accelerated denaturation between 35 and 39 °C with a midpoint at 37.2±0.6 °C. The transition was reversible below 39 °C and independent of solution pH (pH 6.8–7.8). It was also independent of the oxygenation state of hemoglobin, since a sample that was extensively deoxygenated with N2 showed a similar transition by CD. These findings suggest that a structural change in hemoglobin may enable the cellular passage phenomenon as well as the temperature-dependent decrease in viscosity of RBC solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artmann GM, Kelemen C, Porst D, Bueldt G, Chien S (1998) Temperature transitions of protein properties in human red blood cells. Biophys J 75:3179–3183

    CAS  PubMed  Google Scholar 

  • Asakura T, Segal ME, Friedman S, Schwartz E (1975) A rapid test for sickle hemoglobin. J Am Med Assoc 233:156

    Article  CAS  Google Scholar 

  • Bettati S, Mozzarelli A, Perutz MF (1998) Allosteric mechanism of haemoglobin: rupture of salt-bridges raises the oxygen affinity of the T-structure. J Mol Biol 281:581–585

    Article  CAS  PubMed  Google Scholar 

  • Bierzynski A (2001) Methods of peptide conformation studies. Acta Biochim Pol 48:1091–1099

    CAS  PubMed  Google Scholar 

  • Cameron IL, Ord VA, Fullerton GD (1988) Water of hydration in the intra- and extra-cellular environment of human erythrocytes. Biochem Cell Biol 66:1186–1199

    CAS  PubMed  Google Scholar 

  • Chang CT, Wu CS, Yang JT (1978) Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem 91:13–31

    CAS  PubMed  Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612

    PubMed  Google Scholar 

  • Clementi ME, Condo SG, Castagnola M, Giardina B (1994) Hemoglobin function under extreme life conditions. Eur J Biochem 223:309–317

    CAS  PubMed  Google Scholar 

  • Geraci G, Parkhurst LJ (1981) Circular dichroism spectra of hemoglobins. Methods Enzymol 76:262–275

    CAS  PubMed  Google Scholar 

  • Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10

    Article  CAS  PubMed  Google Scholar 

  • Guidotti G (1967) Studies on the chemistry of hemoglobin. IV. The mechanism of reaction with ligands. J Biol Chem 242:3704–3712

    CAS  PubMed  Google Scholar 

  • Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    Article  PubMed  Google Scholar 

  • Kelemen C, Chien S, Artmann GM (2001) Temperature transition of human hemoglobin at body temperature: effects of calcium. Biophys J 80:2622–2630

    CAS  PubMed  Google Scholar 

  • Kinderlerer J, Lehmann H, Tipton KF (1970) Thermal denaturation of human haemoglobins. Biochem J 119:66P–67P

    CAS  Google Scholar 

  • Kinderlerer J, Lehmann H, Tipton KF (1973) The thermal denaturation of human oxyhaemoglobins A, A2, C and S. Biochem J 135:805–814

    CAS  PubMed  Google Scholar 

  • Li R, Nagai Y, Nagai M (2000) Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin. J Inorg Biochem 82:93–101

    Article  CAS  PubMed  Google Scholar 

  • Lumry R (1974) Participation of water in protein reactions. Ann NY Acad Sci 227:471–485

    CAS  PubMed  Google Scholar 

  • Lumry R, Rajender S (1970) Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9:1125–1227

    CAS  PubMed  Google Scholar 

  • Makarevic J, Jokic M, Frkanec L, Katalenic D, Zinic M (2002) Gels with exceptional thermal stability formed by bis(amino acid) oxalamide gelators and solvents of low polarity. Chem Commun (Cambridge) 2238–2239

  • Mihailescu MR, Russu IM (2001) A signature of the T→R transition in human hemoglobin. Proc Natl Acad Sci USA 98:3773–3777

    Article  CAS  PubMed  Google Scholar 

  • Monti JP, Gallice P, Baz M, Murisasco A, Crevat A, Elsen R (1989) Intraerythrocytic pH variations during hemodialysis: a 31P NMR study. Kidney Int 35:871–874

    CAS  PubMed  Google Scholar 

  • Perutz MF (1990) Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol 52:1–25

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Wilkinson AJ, Paoli M, Dodson GG (1998) The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu Rev Biophys Biomol Struct 27:1–34

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA 99:5596–5600

    CAS  PubMed  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    CAS  PubMed  Google Scholar 

  • Privalov PL, Khechinashvili NN, Atanasov BP (1971) Thermodynamic analysis of thermal transitions in globular proteins. I. Calorimetric study of chymotrypsinogen, ribonuclease and myoglobin. Biopolymers 10:1865–1890

    PubMed  Google Scholar 

  • Ruckpaul K, Rein H, Jung F (1971) Correlations between thermal stability and circular dichroism of hemoglobin derivatives of different species. FEBS Lett 13:193–194

    Article  CAS  PubMed  Google Scholar 

  • Ryan M, Levy MM (2003) Clinical review: fever in intensive care unit patients. Crit Care 7:221–225

    Article  PubMed  Google Scholar 

  • Silva MM, Rogers PH, Arnone A (1992) A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem 267:17248–17256

    CAS  PubMed  Google Scholar 

  • Srinivasan R, Rose GD (1994) The T-to-R transformation in hemoglobin: a reevaluation. Proc Natl Acad Sci USA 91:11113–11117

    CAS  PubMed  Google Scholar 

  • Temiz A, Baskurt OK, Pekcetin C, Kandemir F, Gure A (2000) Leukocyte activation, oxidant stress and red blood cell properties after acute, exhausting exercise in rats. Clin Hemorheol Microcirc 22:253–259

    CAS  PubMed  Google Scholar 

  • Walters MC, Nienhuis AW, Vichinsky E (2002) Novel therapeutic approaches in sickle cell disease. Hematology (Am Soc Hematol Educ Program) 10–34

  • Yang T, Olsen KW (1988) Effects of crosslinking on the thermal stability of hemoglobins. II. The stabilization of met-, cyanomet-, and carbonmonoxyhemoglobins A and S with bis(3,5-dibromosalicyl) fumarate. Arch Biochem Biophys 261:283–290

    CAS  PubMed  Google Scholar 

  • Yang T, Olsen KW (1990) The thermal stability of Hb O-Indonesia [alpha 116(GH4)Glu----Lys]. Hemoglobin 14:641–646

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to G.M.A. from the Ministry of Science and Education in North Rhine Westfalia, Germany. Experiments have in part been performed in the Department of Bioengineering, University of California, San Diego and at the Department of Chemistry and Biochemistry (Prof. Susan Taylor). We thank Dipl. Ing. Carsten Meixner for his patience in carrying out a significant part of the CD experiments presented here. We also thank Prof. Y.C. Fung who followed these experiments with great interest, enthusiasm and always with a fabulous smile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard M. Artmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artmann, G.M., Burns, L., Canaves, J.M. et al. Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature. Eur Biophys J 33, 490–496 (2004). https://doi.org/10.1007/s00249-004-0401-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0401-8

Keywords

Navigation