Skip to main content
Log in

Bacterial Community and Nitrogen Fixation in the Red Turpentine Beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae)

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), colonizes all pines species within its native range throughout North and Central America. Recently, this species was accidentally introduced to China, where it has caused severe damage in pine forests. It belongs to a group of beetles that spend most of their lives between the tree bark and sapwood, where it feeds on phloem: a poor substrate with very low nutritional value of nitrogen and toxic properties due to its high content of secondary defensive compounds. The aim of this study was to characterize the bacterial community of the D. valens gut by culture-dependent and -independent methods. Polymerase chain reaction denaturing gradient gel electrophoresis and ribosomal gene library analyses revealed that species diversity in the D. valens gut was relatively low, containing between six and 17 bacterial species. The bacterial community associated with larvae and adults was dominated by members of the following genera: Lactococcus, Acinetobacter, Pantoea, Rahnella, Stenothrophomonas, Erwinia, Enterobacter, Serratia, Janibacter, Leifsonia, Cellulomonas, and Cellulosimicrobium. The members of the last four genera showed cellulolytic activity in vitro and could be involved in cellulose breakdown in the insect gut. Finally, nitrogen fixation was demonstrated in live larvae and adults; however, capacity of nitrogen fixing in vitro was not found among enterobacterial species isolated in nitrogen-free media; neither were nifD nor nifH genes detected. In contrast, nifD gen was detected in metagenomic DNA from insect guts. The identification of bacterial species and their potential physiological capacities will allow exploring the role of gut symbiotic bacteria in the adaptation and survival of D. valens in a harsh chemical habitat poor in nitrogen sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adams L, Boopathy R (2005) Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresour Technol 96:1592–1598

    Article  PubMed  CAS  Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Ayres MP, Wilkens RT, Ruel CJ, Lombardero MJ, Vallery E (2000) Nitrogen budges of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2221

    Google Scholar 

  4. Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203

    Article  Google Scholar 

  5. Bleiker KP, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396

    Article  PubMed  CAS  Google Scholar 

  6. Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287

    Article  PubMed  CAS  Google Scholar 

  7. Brand JM, Bracke JW, Markovetz AJ, Wood DL, Browne LE (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254:136–137

    Article  PubMed  CAS  Google Scholar 

  8. Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Ann Rev Microbiol 36:323–343

    Article  CAS  Google Scholar 

  9. Bridges JR (1981) Nitrogen-fixing bacteria associated with bark beetles. Microb Ecol 7:131–137

    Article  Google Scholar 

  10. Bridges JR, Marler JE, McSparrin BH (1984) A quantitative study of the yeasts and bacteria associated with laboratory-reared Dendroctonus frontalis Zimm. (Coleopt., Scolytidae). J Appl Entomol 97:261–267

    Google Scholar 

  11. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  PubMed  CAS  Google Scholar 

  12. Brune A (1998) Termites guts: the world's smallest bioreactors. Trends Biotechnol 16:16–21

    Article  CAS  Google Scholar 

  13. Byres JA (1995) Host tree chemistry affecting colonization in bark beetles. In: Cardé RT, Bell WJ (eds) Chemical ecology of insects 2. Chapman and Hall, New York, pp 154–213

    Google Scholar 

  14. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  PubMed  Google Scholar 

  15. Campbell CL, Mummey DL, Schmidtmann ET, Wilson WC (2004) Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). J Med Entomol 41:340–348

    Article  PubMed  Google Scholar 

  16. Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). Microbiol Lett 244:341–345

    Article  CAS  Google Scholar 

  17. Cazemier AE, Hackstein JHP, OpdenCamp HJM, Rosenberg J, van der Drift C (1997) Bacteria in the intestinal tract of different species of arthropods. Microb Ecol 33:189–197

    Article  PubMed  Google Scholar 

  18. Cibrián-Tovar D, Méndez-Montiel JT, Campos-Bolaños R, Yates HO III, Flores-Lara J (1995) Insectos forestales de México [Forest Insects of Mexico]. Universidad Autónoma Chapingo, Chapingo

    Google Scholar 

  19. Cognato AI, Sun JH, Anducho MA, Owen D (2005) Genetic variation and origin of red turpentine beetles (Dendroctonus valens LeConte) introduced to the People's Republic of China. Ag Forest Entomol 7:87–94

    Article  Google Scholar 

  20. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296

    Article  CAS  Google Scholar 

  21. Cruden DL, Markovetz AJ (1984) Microbial aspects of the cockroach hindgut. Arch Microbiol 138:131–139

    Article  PubMed  CAS  Google Scholar 

  22. Cullen DW, Hirsch PR (1988) Simple and rapid method for direct extraction of microbial DNA from soil to PCR. Soil Biol Biochem 30:983–993

    Article  Google Scholar 

  23. Delalibera I, Handelsman J, Raffa KF (2005) Contrasts in cellulolytic activities of gut microorganisms between the wood borer, Saperda vestita (Coleoptera : Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera : Curculionidae). Environ Entomol 34:541–547

    Article  Google Scholar 

  24. Delalibera I, Vasanthakumar A, Burwitz BJ, Schloss PD, Klepzig KD, Handelsman J, Raffa K (2007) Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis 43:97–104

    CAS  Google Scholar 

  25. Díaz E, Cisneros R, Zúñiga G, Uría-Galicia E (1998) Comparative anatomical and histological study of the alimentary canal of Dendroctonus parallelocollis, D. rhizophagus, and D. valens (Coleoptera: Scolytidae). Ann Entomol Soc Am 91:479–487

    Google Scholar 

  26. Díaz E, Cisneros R, Zuñiga G (2000) Comparative anatomical and histological study of the alimentary canal of the Dendroctonus frontalis (Coleoptera: Scolytidae) complex. Ann Entomol Soc Am 93:303–311

    Article  Google Scholar 

  27. Díaz E, Arciniega O, Sánchez L, Cisneros R, Zúniga G (2003) Anatomical and histological comparison of the alimentary canal of Dendroctonus micans, D. ponderosae, D. pseudotsugae pseudotsugae, D. rufipennis, and D. terebrans (Coleoptera: Scolytidae). Ann Entomol Soc Am 96:144–152

    Article  Google Scholar 

  28. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  PubMed  CAS  Google Scholar 

  29. Dunn AK, Stabb EV (2005) Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl Environ Microbiol 71:8784–8794

    Article  PubMed  CAS  Google Scholar 

  30. Egert M, Wagner B, Lemke T, Brune A, Friedrich MW (2003) Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668

    Article  PubMed  CAS  Google Scholar 

  31. Egert M, Stingl U, Bruun LD, Pommerenke B, Brune A, Friedrich MW (2005) Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 71:4556–4566

    Article  PubMed  CAS  Google Scholar 

  32. Furniss RL, Carolin VM (1977) Western forest insects. U.S. Dep. Agric, Forest Service, Washington, DC

    Google Scholar 

  33. Guindon S, Gascuel O (2003) PhyML—a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  35. Hashidoko Y, Tada M, Osaki M, Tahara S (2002) Soft gel medium solidified with gellan gum for preliminary screening for root-associating, free-living nitrogen-fixing bacteria inhabiting the rhizoplane of plants. Biosci Biotechnol Biochem 66:2259–2263

    Article  PubMed  CAS  Google Scholar 

  36. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  37. Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). Microbiol Ecol 44:231–242

    Article  CAS  Google Scholar 

  38. Hunt DWA, Borden JH (1989) Terpene alcohol pheromone production by Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae) in the absence of readily culturable microorganisms. J Chem Ecol 15:1433–1463

    Article  CAS  Google Scholar 

  39. Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). Microbiol Ecol 56:34–43

    Article  CAS  Google Scholar 

  40. Kikuchi Y, Meng XY, Fukatsu T (2005) Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). Appl Environ Microbiol 71:4035–4043

    Article  PubMed  CAS  Google Scholar 

  41. Miao ZW, Chou WM, Huo FY, Wang XL, Fang JX, Zhao MM (2001) Biology of Dendroctonus valens in Shanxi Province. Shanxi For Sci Tech 23:34–37

    Google Scholar 

  42. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:42–428

    Google Scholar 

  43. Moore GE (1972) Microflora from the alimentary tract of healthy southern pine beetles, Dendroctonus frontalis (Scolytidae), and their possible relationship to pathogenicity. J Invertebr Pathol 19:72–75

    Article  Google Scholar 

  44. Moore GE (1972) Pathogenicity of ten strains of bacteria to larvae of the southern pine beetle [Dendroctonus frontalis]. J Invertebr Pathol 20:41–45

    Article  Google Scholar 

  45. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 12:8802–8810

    Article  CAS  Google Scholar 

  46. Muyzer G, De Waall EC, Vitterlinden AG (1993) Profiling of complete microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rDNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  47. Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763

    Article  PubMed  CAS  Google Scholar 

  48. Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA, Vongkaluang C, Kudo T, Ohkuma M (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20

    Article  PubMed  CAS  Google Scholar 

  49. Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    PubMed  CAS  Google Scholar 

  50. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  PubMed  CAS  Google Scholar 

  51. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  52. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion an Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  53. Potrikus CJ, Breznak JA (1980) Uric acid-degrading bacteria in guts of termites [Reticulitermes flavipes (Kollar)]. Appl Environ Microbiol 40:117–124

    PubMed  CAS  Google Scholar 

  54. Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci U S A 78:4601–4605

    Article  PubMed  CAS  Google Scholar 

  55. Relman DA (1993) Universal bacterial 16 S rRNA amplification and sequencing. American Society of Microbiology, Washington, DC, pp 489–495

    Google Scholar 

  56. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536

    Article  PubMed  CAS  Google Scholar 

  57. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual·, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  58. Sanguinetti CJ, Dias-Neto E, Simpson AJ (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotech 17:915–919

    Google Scholar 

  59. Schäfer A (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    PubMed  Google Scholar 

  60. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  61. Schloss PD, Delalibera I, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629

    Article  Google Scholar 

  62. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010

    PubMed  CAS  Google Scholar 

  63. Six DL (2003) Bark beetle-fungus symbiosis. In: Miller TA, Bourtzis K (eds) Insect symbiosis. CRC, Boca Raton

    Google Scholar 

  64. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Envirom Microbiol 43:777–780

    CAS  Google Scholar 

  65. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  66. Thornber JP, Northcote DH (1961) Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. Biochem J 81:449–455

    PubMed  CAS  Google Scholar 

  67. Tokuda G, Watanabe H, Lo N (2007) Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Gene 401:131–134

    Article  PubMed  CAS  Google Scholar 

  68. Ulrich R, Buthula D, Klug M (1981) Microbiota associated with the gastrointestinal tract of the common house cricket, Anacheta domestica. Appl Environ Microbiol 41:246–254

    PubMed  CAS  Google Scholar 

  69. Vasanthakumar A, Delalibera I, Handelsman J, Klepzig KD, Schloss PD, Raffa KF (2006) Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ Entomol 35:1710–1717

    Article  Google Scholar 

  70. Viiri H, Niemelä P, Kitunen V, Annila E (2001) Soluble carbohydrates, radial growth and vigour of fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:327–334

    Article  CAS  Google Scholar 

  71. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Kunin V, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz LJR (2007) Metagenomic and fuctional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  72. Warren JM, Lee Allen H, Booker FL (2002) Mineral nutrition, resin flow and phloem phytochemistry in loblolly pine. Tree Physiol 19:655–663

    Google Scholar 

  73. Williams JGK, Kubelik AR, Livak KJ, Rafalsky JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  74. Wood SL (1982) The bark and ambrosia beetle of North and Central America (Coleoptera: Scolytidae). A taxonomic monograph. Great Basin Nat Mem 6:1–1359

    Google Scholar 

  75. Xiang H, Wei GF, Jia S, Huang J, Miao XX, Zhou Z, Zhao LP, Huang YP (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera). Can J Microbiol 52:1085–1092

    Article  PubMed  CAS  Google Scholar 

  76. Yan Z, Sun J, Don O, Zhangi Z (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodiv Conserv 14:1735–1760

    Article  Google Scholar 

  77. Yilmaz H, Sezen K, Kati H, Demirbağ Z (2006) The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biologia 61:679–686

    Article  Google Scholar 

Download references

Acknowledgments

We thank Esperanza Martínez-Romero and Marco Rogel for their technical assistance with the acetylene reduction assay, and Francisco Bonilla, Marco Espinal, Fernanda López, Arturo Vera, Javier Zavala for support in insect collection. Also, we thank Hugo Ramírez Saad and Félix Garrido for their technical assistance with DGGE. This work was supported by grants CGPI20060532 and CGPI20070651, IPN, and CONAFOR 2002 C01-6020. Jesús Morales-Jiménez thanks to CONACyT and PIFI, IPN, for scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L. et al. Bacterial Community and Nitrogen Fixation in the Red Turpentine Beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58, 879–891 (2009). https://doi.org/10.1007/s00248-009-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9548-2

Keywords

Navigation