Skip to main content
Log in

Stents and flow diverters in the treatment of aneurysms: device deformation in vivo may alter porosity and impact efficacy

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

High-porosity (HP) and flow-diverting (FD) stents are increasingly used to treat intracranial aneurysms. In vivo device deformations and their impact on the porosity of the segment of device lying over the aneurysm neck remain inadequately characterized.

Methods

Porosities of different braided FDs were studied in straight and 90° curved glass tubes. In vivo, 11 experimental lateral wall aneurysms were treated with FD (n = 7) or HP (n = 4) stents. At 3 months, the segment of FDs and HP stents over the aneurysm neck was analyzed, paying attention to changes in device diameter, metallic porosity, and neointimal closure of pores over the aneurysm or branch ostia. Device deformations were reproduced with benchtop experiments.

Results

In 90° curved tubes, FD porosity was higher (P = 0.025) and pore density was lower (P = 0.01) on convex compared to concave surfaces, but variations remained within 5–10 %. After in vivo deployment, a spindle-shaped deformation of FDs occurred, with focal expansion at the level of the aneurysm neck (P = 0.004). This deformation translated into an accordion-like distribution of stent struts across the aneurysm neck, where porosity was not uniform. The midsection of the aneurysm ostium had more metal coverage than adjacent ostial areas (P = 0.002). Mean porosity over the aneurysm neck was 78 ± 9.4 and 32.6 ± 12.1 % for HP and FD stents, respectively (P = 0.008), decreasing to 13.0 ± 10.1 and 1.4 ± 0.6 % (P = 0.022) following neointimal coverage, respectively. Spindle-shaped deformations and accordion effects were reproduced with benchtop manipulations; fluctuations in porosity and diameter changes correlated closely (R = 0.81; P = 0.005).

Conclusion

Alterations in porosity may occur following in vivo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Byrne JV, Beltechi R, Yarnold JA, Birks J, Kamran M (2010) Early experience in the treatment of intra-cranial aneurysms by endovascular flow diversion: a multicentre prospective study. PLoS One 5(9). doi:10.1371/journal.pone.0012492

  2. Nelson PK, Lylyk P, Szikora I, Wetzel SG, Wanke I, Fiorella D (2011) The pipeline embolization device for the intracranial treatment of aneurysms trial. AJNR Am J Neuroradiol 32(1):34–40. doi:10.3174/ajnr.A2421

    PubMed  CAS  Google Scholar 

  3. Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR, Berez AL, Tran Q, Nelson PK, Fiorella D (2009) Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 64(4):632–642. doi:10.1227/01.NEU.0000339109.98070.65, discussion 642–633; quiz N636

    Article  PubMed  Google Scholar 

  4. Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda ZS, Lee W, Berez A, Nelson PK (2010) Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. AJNR Am J Neuroradiol 31(6):1139–1147. doi:10.3174/ajnr.A2023

    Article  PubMed  CAS  Google Scholar 

  5. Briganti F, Napoli M, Tortora F, Solari D, Bergui M, Boccardi E, Cagliari E, Castellan L, Causin F, Ciceri E, Cirillo L, De Blasi R, Delehaye L, Di Paola F, Fontana A, Gasparotti R, Guidetti G, Divenuto I, Iannucci G, Isalberti M, Leonardi M, Lupo F, Mangiafico S, Manto A, Menozzi R, Muto M, Nuzzi NP, Papa R, Petralia B, Piano M, Resta M, Padolecchia R, Saletti A, Sirabella G, Bolge LP (2012) Italian multicenter experience with flow-diverter devices for intracranial unruptured aneurysm treatment with periprocedural complications-a retrospective data analysis. Neuroradiology. doi:10.1007/s00234-012-1047-3

  6. Aurboonyawat T, Blanc R, Schmidt P, Piotin M, Spelle L, Nakib A, Moret J (2011) An in vitro study of silk stent morphology. Neuroradiology 53(9):659–667. doi:10.1007/s00234-010-0784-4

    Article  PubMed  Google Scholar 

  7. Darsaut TE, Bing F, Salazkin I, Gevry G, Raymond J (2012) Flow diverters can occlude aneurysms and preserve arterial branches: a new experimental model. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A3075

  8. Fiorella D, Kelly ME, Albuquerque FC, Nelson PK (2009) Curative reconstruction of a giant midbasilar trunk aneurysm with the pipeline embolization device. Neurosurgery 64(2):212–217. doi:10.1227/01.NEU.0000337576.98984.E4, discussion 217

    Article  PubMed  Google Scholar 

  9. Fiorella D, Woo HH, Albuquerque FC, Nelson PK (2008) Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the pipeline embolization device. Neurosurgery 62(5):1115–1120. doi:10.1227/01.neu.0000325873.44881.6e, discussion 1120–1121

    Article  PubMed  Google Scholar 

  10. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ (2009) A second-generation, endoluminal, flow-disrupting device for treatment of saccular aneurysms. AJNR Am J Neuroradiol 30(6):1153–1158. doi:10.3174/ajnr.A1530

    Article  PubMed  CAS  Google Scholar 

  11. Kulcsar Z, Ernemann U, Wetzel SG, Bock A, Goericke S, Panagiotopoulos V, Forsting M, Ruefenacht DA, Wanke I (2010) High-profile flow diverter (silk) implantation in the basilar artery: efficacy in the treatment of aneurysms and the role of the perforators. Stroke: J Cereb Circ 41(8):1690–1696. doi:10.1161/STROKEAHA.110.580308

    Article  Google Scholar 

  12. Kulcsar Z, Houdart E, Bonafe A, Parker G, Millar J, Goddard AJ, Renowden S, Gal G, Turowski B, Mitchell K, Gray F, Rodriguez M, van den Berg R, Gruber A, Desal H, Wanke I, Rufenacht DA (2011) Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 32(1):20–25. doi:10.3174/ajnr.A2370

    PubMed  CAS  Google Scholar 

  13. Lieber BB, Sadasivan C (2010) Endoluminal scaffolds for vascular reconstruction and exclusion of aneurysms from the cerebral circulation. Stroke: J Cereb Circ 41(10 Suppl):S21–S25. doi:10.1161/STROKEAHA.110.595066

    Article  Google Scholar 

  14. Sadasivan C, Cesar L, Seong J, Rakian A, Hao Q, Tio FO, Wakhloo AK, Lieber BB (2009) An original flow diversion device for the treatment of intracranial aneurysms: evaluation in the rabbit elastase-induced model. Stroke: J Cereb Circ 40(3):952–958. doi:10.1161/STROKEAHA.108.533760

    Article  Google Scholar 

  15. Seong J, Wakhloo AK, Lieber BB (2007) In vitro evaluation of flow divertors in an elastase-induced saccular aneurysm model in rabbit. J Biomech Eng 129(6):863–872. doi:10.1115/1.2800787

    Article  PubMed  Google Scholar 

  16. Dorn F, Niedermeyer F, Balasso A, Liepsch D, Liebig T (2011) The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry. Neuroradiology 53(4):267–272. doi:10.1007/s00234-010-0723-4

    Article  PubMed  Google Scholar 

  17. Mut F, Cebral JR (2012) Effects of flow-diverting device oversizing on hemodynamics alteration in cerebral aneurysms. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A3080

  18. Makoyeva A, Bing F, Darsaut TE, Salazkin I, Raymond J (2012) The varying porosity of braided self-expanding stents and flow-diverters: an experimental study. Am J Neuroradiol (in press)

  19. Turowski B, Macht S, Kulcsar Z, Hanggi D, Stummer W (2011) Early fatal hemorrhage after endovascular cerebral aneurysm treatment with a flow diverter (SILK-Stent): do we need to rethink our concepts? Neuroradiology 53(1):37–41. doi:10.1007/s00234-010-0676-7

    Article  PubMed  Google Scholar 

  20. Bouzeghrane F, Naggara O, Kallmes DF, Berenstein A, Raymond J (2010) In vivo experimental intracranial aneurysm models: a systematic review. AJNR Am J Neuroradiol 31(3):418–423. doi:10.3174/ajnr.A1853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the “Fondation de l’Association des Radiologistes du Québec” (FARQ) in collaboration with “Fonds de la Recherche en Santé du Québec” (FRSQ) grant (to Dr. Jean Raymond). This work was also supported by an Imaging Research Bursary Fellowship from “Société Française de Radiologie” to Dr. Fabrice Bing and a pilot project grant from the “Society of Interventional Radiology” (SIR) to Dr. Tim Darsaut. Stents and FDs were gifts from Microvention Inc.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Raymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bing, F., Darsaut, T.E., Salazkin, I. et al. Stents and flow diverters in the treatment of aneurysms: device deformation in vivo may alter porosity and impact efficacy. Neuroradiology 55, 85–92 (2013). https://doi.org/10.1007/s00234-012-1082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1082-0

Keywords

Navigation