Skip to main content
Log in

Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

A hydrothermal method of fabricating nanomaterials at wood surfaces is described in this paper. Nanomaterials with different morphologies including spherical anatase TiO2, amorphous SiO2, wurtzite ZnO nanorod arrays, intertwining MnO2 nanowires, shuttle-shaped CaCO3 nanorods, and rhombic and cubic NaCl were deposited at wood surfaces. TiO2–ZnO compound nanoparticles and CuO nanoparticles were also created. The surface morphologies and crystalline structures of the prepared samples were characterized by scanning electron microscopy and X-ray diffraction, respectively. No obvious changes in the color of wood were caused by the hydrothermal process except those nanomaterials of Mn or Cu deposited at surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300

    Article  CAS  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  CAS  Google Scholar 

  • Collett BM (1972) A review of surface and interfacial adhesion in wood science and related fields. Wood Sci Technol 6:1–42

    Article  CAS  Google Scholar 

  • Evans PD, Chowdhury M (2010) Photoprotection of wood using polyester-type UV-absorbers derived from the reaction of 2-hydroxy-4(2,3-epoxypropoxy)-benzophenone with dicarboxylic acid anhydrides. J Wood Chem Technol 30:186–204

    Article  CAS  Google Scholar 

  • Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Hansmann C, Weichslberger G, Gindl W (2005) A two-step modification treatment of solid wood by bulk modification and surface treatment. Wood Sci Technol 39:502–511

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Jamali A, Evans PD (2011) Etching of wood surfaces by glow discharge plasma. Wood Sci Technol 45:169–182

    Article  CAS  Google Scholar 

  • Jebrane M, Sèbe G, Cullis I, Evans PD (2009) Photostabilisation of wood using aromatic vinyl esters. Polym Degrad Stab 94:151–157

    Article  CAS  Google Scholar 

  • Kalliat M, Kwak CY, Schmidt PW, Cutter BE, McGinnes EA (1983) Small angle X-ray scattering measurement of porosity in wood following pyrolysis. Wood Sci Technol 17:241–257

    Article  Google Scholar 

  • Kataoka Y, Kiguchi M, Williams R, Evans PD (2007) Violet light causes photodegradation of wood beyond the zone affected by ultraviolet light. Holzforschung 61:23–27

    Article  CAS  Google Scholar 

  • Kumar S (1994) Chemical modification of wood. Wood Fiber Sci 26(2):270–280

    CAS  Google Scholar 

  • Kumar M, Gupta RC, Sharma T (1993) X-ray diffraction studies of Acacia and Eucalyptus wood chars. J Mater Sci 28:805–810

    Article  CAS  Google Scholar 

  • LeVan S, Winandy J (1990) Effects of fire retardant treatments on wood strength: a review. Wood Fiber Sci 22:113–131

    CAS  Google Scholar 

  • Li J, Yu H, Sun Q, Liu Y, Cui Y, Lu Y (2010) Growth of TiO2 coating on wood surface using controlled hydrothermal method at low temperatures. Appl Surf Sci 256(16):5046–5050

    Article  CAS  Google Scholar 

  • Mai C, Militz H (2004) Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds—a review. Wood Sci Technol 37:453–461

    Article  CAS  Google Scholar 

  • Marney DCO, Russell LJ (2008) Combined fire retardant and wood preservative treatments for outdoor wood applications—a review of the literature. Fire Technol 44:1–14

    Article  Google Scholar 

  • Miyafuji H, Saka S (2001) Na2O–SiO2 wood-inorganic composites prepared by the sol-gel process and their fire-resistant properties. J Wood Sci 47:483–489

    Article  CAS  Google Scholar 

  • Paakkari T, Serimaa R (1984) A study of the structure of wood cells by x-ray diffraction. Wood Sci Technol 18:79–85

    Google Scholar 

  • Pinto RJB, Marques PAAP, Barros-Timmons AM, Trindade T, Neto CP (2008) Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. Compos Sci Technol 68:1088–1093

    Article  CAS  Google Scholar 

  • Rautkari L, Properzi M, Pichelin F, Hughes M (2009) Surface modification of wood using friction. Wood Sci Technol 43:291–299

    Article  CAS  Google Scholar 

  • Sarén M-P, Serimaa R (2006) Determination of microfibril angle distribution by X-ray diffraction. Wood Sci Technol 40:445–460

    Article  Google Scholar 

  • Sèbe G, Brook MA (2001) Hydrophobization of wood surfaces: covalent grafting of silicone polymers. Wood Sci Technol 35:269–282

    Article  Google Scholar 

  • Subramaniana RV, Balabaa WM, Somasekharan KN (1982) Surface modification of wood using nitric acid. J Adhes 14(3–4):295–304

    Article  Google Scholar 

  • Sun Q, Yu H, Liu Y, Li J, Cui Y, Lu Y (2010a) Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method. J Mater Sci 45:6661–6667

    Article  CAS  Google Scholar 

  • Sun Q, Yu H, Liu Y, Li J, Lu Y, Hunt JF (2010b) Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung 64:757–761

    Article  CAS  Google Scholar 

  • Sun Q, Lu Y, Liu Y (2011) Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J Mater Sci 46:7706–7712

    Article  CAS  Google Scholar 

  • Tshabalala M, Sung L-P (2007) Wood surface modification by in situ sol–gel deposition of hybrid inorganic–organic thin films. J Coat Technol Res 4:483–490

    Article  CAS  Google Scholar 

  • Wang C, Piao C (2011) From hydrophilicity to hydrophobicity: a critical review—part II: hydrophobic conversion. Wood Fiber Sci 43:41–56

    CAS  Google Scholar 

  • Williams RS (1983) Effect of grafted UV stabilizers on wood surface erosion and clear coating performance. J Appl Poly Sci 28(6):2093–2103

    Article  CAS  Google Scholar 

  • Yang D, Zheng Z, Zhu H, Liu H, Gao X (2008) Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water. Adv Mater 20:2777–2781

    Article  CAS  Google Scholar 

  • Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik ER, Ke X, Zhu H (2009) An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J Am Chem Soc 131:17885–17893

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV, Komarneni S (2011) Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew Chem Int Ed 50:10594–10598

    Article  CAS  Google Scholar 

  • Zanini S, Riccardi C, Orlandi M, Fornara V, Colombini M, Donato D, Legnaioli S, Palleschi V (2008) Wood coated with plasma-polymer for water repellence. Wood Sci Technol 42:149–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Breeding Plan of Excellent Doctoral Dissertation of Northeast Forestry University (GRAP09), the Program of Introducing Talents of Discipline to Universities of China (B08016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Sun.

Additional information

Qingfeng Sun and Yun Lu are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Lu, Y., Yang, D. et al. Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces. Wood Sci Technol 48, 51–58 (2014). https://doi.org/10.1007/s00226-013-0570-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0570-7

Keywords

Navigation