Skip to main content
Log in

Head, arm and trunk coordination during reaching in children

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

During postural and locomotor tasks, the orientation of the head with respect to space is maintained in order to serve as an egocentric reference value for maintaining balance. In young children during locomotor tasks, task difficulty determines the coordination of movements between head–trunk segments: the more difficult the task, the more the child limits the head on trunk movement (“en bloc”) rather than letting the head move freely in space. For reaching tasks, however, there are no data about the development and maturation of coordination between the head and trunk movements and when the pattern of coordination is considered mature. The goal of this study was to characterize the development of head–trunk coordination during reaching from a sitting position in typically developing children. Forty-four typically-developing (TD) children aged from 2.8 to 11.8 years and six healthy adults participated. Children were divided into five groups (G1–G5) according to their age: 2–3, 4–5, 6–7, 8–9 and 10–11 years old. The task involved reaching towards and grasping a piece of food in the younger group or a wooden block in the older children and adults with the dominant hand, adequate to the grip size of each participant, and returning it to the mouth area to simulate self-feeding. The object was placed in line with the midline of the body at three different distances from the trunk according to the participant’s arm length (two within and one beyond arm’s length). Rotational movements of the head and trunk in three planes; yaw, roll and pitch, were recorded using three-dimensional tracking systems (Optotrak, Northern Digital, Model 3010 or Ariel Performance Analysis System). The variables analysed were relative head and trunk angle, absolute head and trunk angle, the anchoring index (AI) and initial direction of head and trunk rotation (direction index: DI). Patterns of head–trunk coupling were different along different axes of rotation and across groups. For the AI, a head-stabilized-on-trunk (HST) or “en bloc” pattern was observed with approximately the same frequency as a head-stabilized-in-space (HSS) pattern in the youngest children in the yaw plane for reaches within arm’s length. In all other planes and for reaches of all distances, a HSS pattern was evident in the youngest children and remained consistent across the groups of children. Compared to the children, adult reaching was characterised by fixed head–trunk coordination (HST) in the roll plane at all reach distances, and greater decoupling in yaw plane motion for the two closest distances. There were no age-related differences in the pitch plane strategy which was mainly HSS. The DI patterns matured by 2–3 or 4–5 years of age, except for reaches to T1 in the pitch plane. In addition, in the roll plane, there was evidence of a two-step maturation that was not complete until adulthood. Maturation of strategies used to stabilize the head and trunk relative to each other and to the reaching arm differ across movement planes for a seated reaching task. Our data suggest that different aspects of  head and trunk coordination during reaching movement mature at different rates, like for locomotor tasks previously described, and that the maturation follows a non-chronological and protracted course. These results can serve as a comparative database with which to contrast head and trunk coordination in children with movement disorders. However, in terms of typical development, these data should be considered specific for the task studied and may not reflect general principles of motor development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ada L, Canning CG, Carr JH, Kilbreath SL, Shepherd RB (1994) Task specific training of reaching and manipulation. In: Bennett KMB, Castiello U (eds) Insights into the Reach and Grasp Movement. Amsterdam, pp 234–265

  • Assaiante C (1998) Development of locomotor balance control in health children. Neurosci Biobehav Rev 22:527–532

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C (2000) Construction du répertoire des référentiels posturaux: maturation et adaptation au cours de l’enfance. Habilitation a Dirigé des Recherches. Université de la Méditerranée, Aix-Marseille II

    Google Scholar 

  • Assaiante C, Amblard B (1993) Ontogenesis of head stabilization in space during locomotion in children: influence of visual cues. Exp Brain Res 93:499–515

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Amblard B (1995) An ontogenetic model for the sensorimotor organization of balance control in humans. Hum Mov Sci 14:13–43

    Article  Google Scholar 

  • Assaiante C, Amblard B (1996) Visual factors in the child’s gait: effects on locomotor skills. Percept Mot Skills 83(3 Pt 1):1019–1041

    PubMed  CAS  Google Scholar 

  • Assaiante C, Mallau S, Viel A, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12:109–118

    Article  PubMed  Google Scholar 

  • Assaiante C, McKinley PA, Amblard B (1997) Head–trunk coordination during hops using one or two feet in children and adults. J Vestib Res 7(2–3):145–160

    Article  PubMed  CAS  Google Scholar 

  • Bernstein NA (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bertenthal B, Von Hofsten C (1998) Eye, head and trunk control: the foundation for manual development. Neurosci Biobehav Rev 22(4):515–520

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Pozzo T (1988) Intermittent head stabilization during postural and locomotory tasks in humans. In: Clarac F (ed) Posture and gait; development adaptation and modulation. Elsevier, Amsterdam, pp 189–198

    Google Scholar 

  • Breniere Y, Bril B (1998) Development of postural control of gravity forces in children during the first 5 years of walking. Exp Brain Res 121(3):255–262

    Article  PubMed  CAS  Google Scholar 

  • Casimiro L, Sveistrup H (2001) Feedforward postural adjustments associated with a goal-directed reach produced by infants in the sitting and standing positions. In: Duysens J, Smits-Engelsman BCM, Kingma H (eds) Control of posture and gait. Solvay, Brussels, pp 23–26

    Google Scholar 

  • Chari VR, Kirby RL (1986) Lower-limb influence on sitting balance while reaching forward. Arch Phys Med Rehabil 67:730–733

    Article  PubMed  CAS  Google Scholar 

  • Crosbie J, Herbert RD, Bridson JT (1997) Intersegmental dynamics of standing from sitting. Clin Biomech 12:227–235

    Article  Google Scholar 

  • Crovitz HF, Zener K (1962) A group test for assessing hand and eye dominance. Am J Psych 75:271–276

    Article  CAS  Google Scholar 

  • Dellen T van, Kalverboer AF (1984) Single movement control and information processing, a developmental study. Behav Brain Res 12:237–238

    Article  Google Scholar 

  • Deutsch KM, Newell KM (2004) Changes in the structure of children’s isometric force variability with practice. J Exp Child Psychol 88:319–333

    Article  PubMed  Google Scholar 

  • DiFabio RP, Emasithi A (1997) Aging and the mechanisms underlying head and postural control during voluntary motion. Phys Ther 77:458–475

    CAS  Google Scholar 

  • Elliott JM, Connolly KJ (1984) A classification of manipulative hand movements. Dev Med Child Neurol 26:283–296

    PubMed  CAS  Google Scholar 

  • Forssberg H, Eliasson AC, Kinoshita H, Johansson RS, Westling G (1991) Development of human precision grip. I: basic coordination of force. Exp Brain Res 85(2):451–457

    Article  PubMed  CAS  Google Scholar 

  • Forssberg H, Kinoshita H, Eliasson AC, Johansson RS, Westling G, Gordon AM (1992) Development of human precision grip. II: anticipatory control of isometric forces targeted for object’s weight. Exp Brain Res 90:393–398

    Article  PubMed  CAS  Google Scholar 

  • Haas G, Diener HC, Rapp H, Dichgans J (1989) Development of feedback and feedforward control of upright stance. Dev Med Child Neurol 31:481–488

    Article  PubMed  CAS  Google Scholar 

  • Hay L (1978) Accuracy of children on an open-loop pointing task. Percept Mot Skills 47:1079–1082

    PubMed  CAS  Google Scholar 

  • Hay L, Redon C (1999) Feedforward versus feedback control in children and adults subjected to a postural disturbance. Exp Brain Res 125:153–162

    Article  PubMed  CAS  Google Scholar 

  • Hay L, Redon C (2001) Development of postural adaptation to arm raising. Exp Brain Res 139:224–232

    Article  PubMed  CAS  Google Scholar 

  • Hay L (1990) Developmental changes in eye-hand coordination behaviors: preprogramming versus feedback control. In: Bard C, Fleury M, Hay L (eds) Development of eye-hand coordination across the lifespan. Univ S Carolina Press, Columbia, pp 217–244

    Google Scholar 

  • Huttenlocher J, Newcombe N, Sandberg EH (1994) The coding of spatial location in young children. Cognit Psychol 27:115–147

    Article  PubMed  CAS  Google Scholar 

  • Levin MF, Schneiberg S, Sveistrup H, McKinley P, McFadyen BJ (2003) Variability, the key to motor skill acquisition in children. In: Progress in motor control IV, Caen, August

  • McKenzie BE, Skouteris H, Day RH, Hartman B, Yonas A (1993) Effective action by infants to contact objects by reaching and leaning. Child Dev 64:415–429

    Article  PubMed  CAS  Google Scholar 

  • Michaelsen S, Luta A, Roby-Brami A, Levin MF (2001) Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke 32:1875–1883

    PubMed  CAS  Google Scholar 

  • Rochat P (1995) Perceived reachability for self and for others by 3- to 5-year-old children and adults. J Exp Child Psychol 59:317–333

    Article  PubMed  CAS  Google Scholar 

  • Roncesvalles MN, Schmitz C, Zedka M, Assaiante C, Woollacott M (2005) From egocentric to exocentric spatial orientation: the development of postural control in bi-manual and trunk inclination tasks. J Mot Behav 37:404–416

    Article  PubMed  Google Scholar 

  • Schellekens JMH, Kalverboer AF, Scholten CA (1984) The microstructure of tapping movements in children. J Mot Behav 16:20–39

    PubMed  CAS  Google Scholar 

  • Schmitz C, Assaiante C (2002) Developmental sequence in the acquisition of anticipation during a new co-ordination in a bimanual load-lifting task in children. Neurosci Lett 330(3):215–218

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Martin N, Assaiante C (1999) Development of anticipatory postural adjustments in a bimanual load-lifting task in children. Exp Brain Res 126:200–204

    Article  PubMed  CAS  Google Scholar 

  • Schmitz C, Martin N, Assaiante C (2002) Building anticipatory postural adjustment during childhood: a kinematic and electromyographic analysis of unloading in children from 4 to 8 years of age. Exp Brain Res 142:354–364

    Article  PubMed  Google Scholar 

  • Schneiberg S, Sveistrup H, McFadyen B, McKinley P, Levin MF (2002) Development of coordination for reaching in children. Exp Brain Res 146:142–154

    Article  PubMed  Google Scholar 

  • Schneiberg S, Chen P, Sveistrup H, McKinley P, McFadyen BJ, Levin MF (2003) Head and trunk coordination during reach to grasp movement in children. In: Progress in motor control IV, Caen, August

  • Schneiberg S, Lamarre C, Bibeau A, Gendron S, Bilodeau N, Levin M.F (2004) Kinematic patterns during reach and grasp movement in children with mild cerebral palsy before and after constraint induced therapy (CIT). Abstract. American  Academy of Cerebral Palsy and Developmental Medicine, Los Angeles, Sept

  • Thelen E, Spencer JP (1998) Postural control during reaching in young infants: a dynamic systems approach. Neurosci Biobehav Rev 22:507–514

    Article  PubMed  CAS  Google Scholar 

  • Vallis L, McFadyen BJ (2005) Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path. Exp Brain Res 167:119–127

    Article  PubMed  Google Scholar 

  • van der Fits IB, Hadders-Algra M (1998) The development of postural response patterns during reaching in healthy infants. Neurosci Biobehav Rev 22:521–526

    Article  Google Scholar 

  • van der Fits IB, Klip AWJ, van Eykern LA, Hadders-Algra M (1999a) Postural adjustments during spontaneous and goal-directed arm movements in the first half year of life. Behav Brain Res 106:75–90

    Article  PubMed  Google Scholar 

  • van der Fits IB, Otten E, Klip AW, Van Eykern LA, Hadders-Algra M (1999b) The development of postural adjustments during reaching in 6- to 18-month-old infants. Evidence for two transitions. Exp Brain Res 126:517–528

    Article  PubMed  Google Scholar 

  • van der Heide JC, Otten B, van Eykern LA, Hadders-Algra M (2003) Development of postural adjustments during reaching in sitting children. Exp Brain Res 151:32–45

    Article  PubMed  Google Scholar 

  • Von Hofsten C, Woollacott MH (1989) Postural preparations for reaching in 9 months old infants. Neurosci Abstr 15:1199

    Google Scholar 

Download references

Acknowledgments

We thank all the children, their parents and the adults who participated in this study, Valery Goussev, Ph.D., for analytical programs, Peng Chen and Luiz  Alberto Knaut for part of the data analysis. We gratefully acknowledge financial support from the Reseau provincial de la recherche en réadaptation/adaptation (REPAR) as well as the Fonds de la recherche en santé du Québec (FRSQ). MFL holds a Canada Research Chair in Motor Control and Rehabilitation. HS is a career scientist with the Ministry of Health and Long term Care, ON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sveistrup, H., Schneiberg, S., McKinley, P.A. et al. Head, arm and trunk coordination during reaching in children. Exp Brain Res 188, 237–247 (2008). https://doi.org/10.1007/s00221-008-1357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1357-1

Keywords

Navigation