Skip to main content
Log in

Ultra-trace determination of mercury in river waters after online UV digestion of humic matter

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fully automated online ultraviolet (UV) digestion method for subsequent mercury (Hg) quantification in humic matter containing river waters is reported. The new developed flow injection analysis system (FIAS) consists basically of a UV lamp, a meander-form quartz glass reaction tube for online irradiation of the sample, and a nano-gold collector for preconcentration of dissolved mercury species. The FIAS is coupled to an atomic fluorescence spectrometer (AFS) for Hg detection. The optimized procedure allows accurate mercury quantification in water samples with up to 15 mg C L−1 as dissolved organic carbon by addition of only 1% (v/v) of hydrogen peroxide solution and online UV irradiation for 6 min. Addition of strong oxidants and any other reagents is avoided due to the use of the catalytic active nano-gold collector. Here, preconcentration of Hg species, release of mercury as Hg0, and AFS measurement are performed without addition of any reagents. Hence, the proposed approach offers significant advantages over existing methods. Analytical figures of merit showed the good performance of the developed method: The limit of quantification was found to be as low as 0.14 ng Hg L−1. The linear working range is from 0.1 to 200 ng Hg L−1 and relative standard deviation is <6.0% (n = 9). The system was successfully validated by comparison of the mercury concentrations found in model and real water samples obtained by the reference method EPA 1631 and the proposed method. Furthermore, application to six real river waters confirmed the feasibility of the proposed approach.

Ultra-trace determination of mercury in river waters after online UV digestion of humic matter

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFS:

Atomic fluorescence spectrometry

C:

Carrier

CV:

Cold vapor

DOC:

Dissolved organic carbon

EPA:

Environmental protection agency

FIAS:

Flow injection analysis system

GLS:

Gas–liquid separator

ID:

Inner diameter

NPOC:

Non-particular organic carbon

OD:

Outer diameter

P:

Peristaltic pump

PET:

Polyethylene terephthalate

S:

Sample

SL:

Sample loop

UPW:

Ultra-pure water

UV:

Ultraviolet

References

  1. EU Directive 2001/22/EG

  2. Mason RP, Reinfelder JR, Morel FMM (1995) Water Air Soil Pollut 80:915–921

    Article  CAS  Google Scholar 

  3. Mason RP, Fitzgerald WF, Morel FMM (1994) Geochim Cosmochim Acta 58:3191–3198

    Article  CAS  Google Scholar 

  4. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Atmos Environ 40:4048–4063

    Article  CAS  Google Scholar 

  5. Selin NE (2009) Annu Rev Environ Resource 34:43–63

    Article  Google Scholar 

  6. Cossa D, Martin J-M, Takayanagi K, Sanjuan J (1997) Deep-Sea Res Part II 44:721–740

    Google Scholar 

  7. Mason RP, Rolfhus KR, Fitzgerald WF (1998) Mar Chem 61:37–53

    Google Scholar 

  8. Bloom N (1989) Can J Fish Aquat Sci 46:1131–1140

    Google Scholar 

  9. Meili M (1997) Metal ions in biological systems. In: Sigel A, Sigel H (eds) Mercury and its effect on environment and biology, vol 34. Marcel Dekker, New York, pp 21–51

    Google Scholar 

  10. Leopold K, Foulkes M, Worsfold P (2010) Anal Chim Acta 663:127–138

    Article  CAS  Google Scholar 

  11. Leopold K, Foulkes M, Worsfold P (2009) Trends Anal Chem 28(4):426–435

    Article  CAS  Google Scholar 

  12. Ullrich SM, Tanton TW, Abdrashitova SA (2001) Crit Rev Env Sci Technol 31:241–293

    Article  CAS  Google Scholar 

  13. Lockwood RA, Chen KY (1973) Environ Sci Technol 7:1028–1034

    Article  CAS  Google Scholar 

  14. Leopold K, Harwardt L, Schuster M, Schlemmer G (2008) Talanta 76:382–388

    Article  CAS  Google Scholar 

  15. European Standard EN 13506, 2001 (RefNrEN 13506:2001)

  16. Telliard WA, United States Environmental Protection Agency, Federal Register, vol. 67, no. 209 EPA-821-R-01-033 Method 1631 Revision C, 2001

  17. Zierhut A, Leopold K, Harwardt L, Schuster M (2010) Talanta 81:1529–1535

    Article  CAS  Google Scholar 

  18. Zierhut A, Leopold K, Harwardt L, Worsfold PJ, Schuster M (2009) J Anal At Spectrom 24:767–774

    Article  CAS  Google Scholar 

  19. DIN (1997) Deutsches Institut für Normung e.V., DIN EN 1484, Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC). Beuth Verlag, Berlin

  20. Leopold K, Foulkes M, Worsfold PJ (2009) Anal Chem 81:3421–3428

    Article  CAS  Google Scholar 

  21. Amyot M, Mierle G, Lena D, McQueen DJ (1997) Geochim Cosmochim Acta 61(5):975–987

    Article  CAS  Google Scholar 

  22. Gómez-Ariza JL, Lorenzo F, Garcia-Barrera T (2004) J Chromatograph A 1056:139–144

    Article  Google Scholar 

  23. Tsalev DL, Sperling M, Welz B (2000) Spectrochim Acta B 55:339–353

    Article  Google Scholar 

  24. Achterberg EP, Van den Berg CMG (1994) Anal Chim Acta 291:213–232

    Article  CAS  Google Scholar 

  25. Batley GE, Florence TM (1976) Mar Chem 4:347–363

    Article  CAS  Google Scholar 

  26. Hubaux A, Vos G (1970) Anal Chem 42:849–855

    Google Scholar 

  27. Linsinger TPJ (2005) Comparison of measurement result with the certified value, application Note 1 EC-JRC, IRMM

Download references

Acknowledgments

The presented work was funded by the German Federal ministry for Economy and Technology (BMWi) in a ZIM project. We would like to express our gratitude to our co-operation partners from Analytik Jena AG in this project for provision of instrumentation. Special thanks are given to T. Labatzke (Analytik Jena AG, Germany) for checking UV-lamps for compatibility with the automated FIA system. Furthermore, we would like to thank S. West (Technische Universität München, Germany) for TOC and DOC analysis. We are also thankful to R. Schindl, N. Feichtmeier (University of Ulm, Germany), and H. Sievers (Technische Universität München, Germany) for helping with river water sampling. Furthermore, we are gratefully indebted to Prof. Dr. M. Schuster (Technische Universität München, Germany) to make the clean room facility available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Leopold.

Additional information

Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert J. Bettmer, T. Hasegawa, Q. Wang, and Y. Wei.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopold, K., Zierhut, A. & Huber, J. Ultra-trace determination of mercury in river waters after online UV digestion of humic matter. Anal Bioanal Chem 403, 2419–2428 (2012). https://doi.org/10.1007/s00216-012-5851-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5851-8

Keywords

Navigation