Skip to main content
Log in

Phototransformations of selected pharmaceuticals under low-energy UVA–vis and powerful UVB–UVA irradiations in aqueous solutions—the role of natural dissolved organic chromophoric material

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of simulated low-energy daylight (UVA–vis) and powerful combined ultraviolet B and A (UVB–UVA) induced direct and indirect phototransformations of four pharmaceuticals, i.e., ibuprofen, metoprolol, carbamazepine, and warfarin, which were investigated in dilute solutions of pure laboratory and natural humic waters. The results strengthen the essential function of natural chromophores in dissolved organic material (CDOM) as principal photosensitizer toward indirect phototransformations of pharmaceuticals in natural conditions under available low-energy UVA–vis and slight UVB radiations. The results confirmed that organic micropollutants are able to undergo a direct photolysis if their absorbance spectra overlap the spectral range of the available radiation but only if the radiation is strong enough, e.g., ibuprofen is able to undergo only indirect photolysis via different pathways in all realistic conditions. The action of nitrate anions as photosensitizers in the applied conditions proved to be of little importance. High-performance size-exclusion chromatographic experiments verified that the rate constants obtained under the low-energy UVA–vis and powerful UVB–UVA irradiations for the decreased amounts of the two largest molecular size fractions of CDOM were quite close to the rate constants detected for the increased amounts of the next five molecular size fractions with smaller molecular sizes. The decreased contents of the two largest molecular size fractions correlated quite well with the decreased contents of the studied pharmaceuticals under the low-energy UVA–vis irradiation process but somewhat less under the powerful UVB–UVA irradiation. The photochemically induced decomposition of the CDOM aggregates appears to increase the amounts of smaller molecular size fractions and simultaneously produce via CDOM-stimulated radical reactions indirect structural transformations of pharmaceuticals. Apparent quantum yields were estimated for the transformation–degradation of the two largest molecular-size CDOM aggregates under low-energy UVA–vis and powerful UVB–UVA irradiations.

Structural difference between CDOM and pharmaceuticals studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Environ Sci Technol 41:8211–8217

    Article  CAS  Google Scholar 

  2. Nikolaou A, Meric S, Fatta D (2006) Anal Bioanal Chem 387:1225–1234

    Article  CAS  Google Scholar 

  3. Fent K, Anna Weston A, Caminada D (2006) Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  4. Jjemba PK (2006) Ecotoxicol Environ Saf 63:113–130

    Article  CAS  Google Scholar 

  5. Crane M, Watts C, Boucard T (2006) Sci Total Environ 367:23–41

    Article  CAS  Google Scholar 

  6. Dzialowski EM, Turner PK, Brooks BW (2006) Environ Con Tox 50:503–510

    Article  CAS  Google Scholar 

  7. Cleuvers M (2005) Chemosphere 59:199–205

    Article  CAS  Google Scholar 

  8. Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Arch Environ Contam Toxicol 43:229–235

    Article  CAS  Google Scholar 

  9. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S, Teague JL (2005) Environ Health Perspect 113:1056–1061

    Article  CAS  Google Scholar 

  10. Liebig M, Moltmann JF, Knacker Y (2006) Environ Sci Pollut Res 13:110–119

    Article  CAS  Google Scholar 

  11. Khetan SK, Collins TJ (2007) Chem Rev 107:2319–2364

    Article  CAS  Google Scholar 

  12. Watts C, Maycock D, Fawell J, Crane M, Goslan E (2007) Desk based review of current knowledge on pharmaceuticals in drinking water and estimation of potential levels. Defra Project Code: CSA 7184/WT02046/DW170/2/213. Watts & Crane, London

  13. Vieno N (2007) Occurrence of pharmaceuticals in Finnish sewage treatment plants, surface waters, and their elimination in drinking water treatment processes. Thesis, University of Technology, Tampere, Finland

  14. Andreozzi R, Marotta R, Paxéus N (2003) Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  15. Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Chemosphere 60:245–253

    Article  CAS  Google Scholar 

  16. Winkler M, Lawrence JR, Neu TR (2001) Wat Res 35:3197–3205

    Article  CAS  Google Scholar 

  17. Lam MW, Young CJ, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, Richards SM, Solomon KR, Mabury SA (2004) Environ Toxicol Chem 23:1431–1440

    Article  CAS  Google Scholar 

  18. Albini A, Fasani E (1998) Photochemistry of drugs: An overview and practical problems. In Albini A, Fasani E (eds) Drugs: photochemistry and photostability, pp. 1–73. The Royal Society of Chemistry, Cambridge UK

  19. Tixier C, Singer HP, Oellers S, Müller SR (2003) Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  20. Boreen AL, Arnold WA, McNeill K (2003) Aquat Sci 65:320–341

    Article  CAS  Google Scholar 

  21. Mill T (1999) Chemosphere 38:1379–1390

    Article  CAS  Google Scholar 

  22. Mack J, Bolton JR (1999) J Photochem Photobiol A Chem 128:1–13

    Article  CAS  Google Scholar 

  23. Frimmel FH (1994) Environ Int 20:373–385

    Article  CAS  Google Scholar 

  24. Peuravuori J, Koivikko R, Pihlaja K (2002) Wat Res 36:4552–4562

    Article  CAS  Google Scholar 

  25. Bilski P, Burkhart JG, Chignell CF (2003) Aquat Toxicol 65:229–241

    Article  CAS  Google Scholar 

  26. Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika RG (1984) Environ Sci Technol 18:358A–371A

    Article  CAS  Google Scholar 

  27. Cooper WJ, Zika RG, Petasne RG, Fisher AM (1989) Sunlight-induced photochemistry of humic substances in natural waters: major reactive species. In Suffet IH, MacCarthy P (eds) Aquatic humic substances—influence on fate and treatment of pollutants, pp. 333–362. ACS, Washington DC

  28. Frimmel FH (1998) Environ Int 24:559–571

    Article  CAS  Google Scholar 

  29. Doll TE, Frimmel FH (2003) Chemosphere 52:1757–1769

    Article  CAS  Google Scholar 

  30. Richard C, Canonica S (2005) Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. In Hutzinger O (ed) The handbook of environmental chemistry, vol. 2, pp. 299–323. Pt. M. Springer, Berlin

  31. Canonica S, Jans U, Stemmler K, Hoigné J (1995) Environ Sci Technol 29:1822–1831

    Article  CAS  Google Scholar 

  32. Manjun Z, Xi Y, Hongshen Y, Lingren K (2007) Front Environ Sci Engin China 1:311–315

    Article  Google Scholar 

  33. Wang W, Zafiriou OC, Chan I-Y, Zepp RG, Blough NW (2007) Environ Sci Technol 41:1601–1607

    Article  CAS  Google Scholar 

  34. Garbin JR, Milori DMBP, Simões ML, da Silva WTL, Neto LM (2007) Chemosphere 66:1692–1698

    Article  CAS  Google Scholar 

  35. Legrini O, Oliveros E, Braun AM (1993) Chem Rev 93:671–698

    Article  CAS  Google Scholar 

  36. Peuravuori J, Pihlaja K (1997) Anal Chim Acta 337:133–149

    Article  CAS  Google Scholar 

  37. OECD (1997) Guidance document on direct phototransformation of chemicals in water. OECD Environmental Health and Safety Publication, Series on testing and assessment, No. 7

  38. Chiron S, Minero C, Vione D (2006) Environ Sci Technol 40:5977–5983

    Article  CAS  Google Scholar 

  39. Monteiro MIC, Ferreira FN, de Oliveira NMM, Ávila AK (2003) Anal Chim Acta 477:125–129

    Article  CAS  Google Scholar 

  40. Scheiner D (1974) Wat Res 8:835–840

    Article  CAS  Google Scholar 

  41. Peuravuori J, Pihlaja K (2004) Environ Sci Technol 38:5958–5967

    Article  CAS  Google Scholar 

  42. Peuravuori J, Bursáková P, Pihlaja K (2007) Anal Bioanal Chem 389:1559–1568

    Article  CAS  Google Scholar 

  43. Seb⊕k A, Vasanits-Zsigrai A, Palkó Gy, Záray Gy, Molnár-Perl I (2008) Talanta 76:642–650

    Article  CAS  Google Scholar 

  44. Liu Q-T, Williams HE (2007) Environ Sci Technol 41:803–810

    Article  CAS  Google Scholar 

  45. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA (2003) Aquat Sci 65:342–351

    Article  CAS  Google Scholar 

  46. Lam MW, Mabury SA (2005) Aquat Sci 67:177–188

    Article  CAS  Google Scholar 

  47. Brezonik PL, Fulkerson-Brekken J (1998) Environ Sci Technol 32:3004–3010

    Article  CAS  Google Scholar 

  48. Vaughan PP, Blough NV (1998) Environ Sci Technol 32:2947–2953

    Article  Google Scholar 

  49. Song W, Cooper WJ, Mezyk SP, Greaves J, Peake BM (2008) Environ Sci Technol 42:1256–1261

    Article  CAS  Google Scholar 

  50. Castell JV, Gomez-Lechon MJ, Miranda MA, Morera IM (1987) Photochem Photobiol 46:991–996

    Article  CAS  Google Scholar 

  51. European Commission (2005) Health & Consumer Protection Directorate-General, Directorate D-Food Safety, Production and distribution chain, D3-Chemicals, Contaminants and Pesticides, Warfarin, SANCO/10434/2004

  52. André C, Guyon C, Guillaum YC (2004) J Chrom B 813:295–302

    Article  CAS  Google Scholar 

  53. Leifer A (1988) The kinetics of environmental aqueous photochemistry—theory and practice. ACS Professional Reference Book, American Chemical Society, Washington, DC

    Google Scholar 

  54. Wang W, Tarr MA, Bianchi TS, Engelhaupt E (2000) Aquat Geochem 6:275–292

    Article  CAS  Google Scholar 

  55. Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Antonius Kettrup A (1998) Environ Sci Technol 32:2531–2541

    Article  CAS  Google Scholar 

  56. Peuravuori J, Pihlaja K (2007) Anal Bioanal Chem 389:475–491

    Article  CAS  Google Scholar 

  57. Rodríguez-Zúñiga UF, Milori DMBP, Da Silva WTL, Martin-Neto L, Oliveira LC, Rocha JC (2008) Environ Sci Technol 42:1948–1953

    Article  CAS  Google Scholar 

  58. Paul A, Stösser R, Zehl A, Zwirnmann E, Vogt RD, Steinberg CEW (2006) Environ Sci Technol 40:5897–5903

    Article  CAS  Google Scholar 

  59. Peuravuori J, Pihlaja K (1998) Anal Chim Acta 364:203–221

    Article  CAS  Google Scholar 

  60. Peuravuori J (2005) Environ Sci Technol 39:5541–5549

    Article  CAS  Google Scholar 

  61. Hu C, Muller-Karger FE, Zepp RG (2002) Limnol Oceanogr 47:1261–1267

    Google Scholar 

Download references

Acknowledgment

The author wish to thank Leena Vänskä (Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku) for participating in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peuravuori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peuravuori, J., Pihlaja, K. Phototransformations of selected pharmaceuticals under low-energy UVA–vis and powerful UVB–UVA irradiations in aqueous solutions—the role of natural dissolved organic chromophoric material. Anal Bioanal Chem 394, 1621–1636 (2009). https://doi.org/10.1007/s00216-009-2816-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2816-7

Keywords

Navigation