Skip to main content
Log in

Effect of quinpirole on timing behaviour in the free-operant psychophysical procedure: evidence for the involvement of D2 dopamine receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Operant timing behaviour is sensitive to dopaminergic manipulations. It has been proposed that this effect is mediated principally by D2-like dopamine receptors. However, we recently found that the effect of d-amphetamine on timing in the free-operant psychophysical procedure was mediated by D1-like dopamine receptors. It has not been established whether stimulation of D2-like receptors affects timing in this schedule.

Objective

To examine the effects of a D2-like receptor agonist quinpirole on second-range timing and the ability of dopamine receptor antagonists to reverse quinpirole’s effects.

Materials and methods

Rats responded on two levers (A and B) under a free-operant psychophysical schedule in which reinforcement was provided intermittently for responding on A during the first half, and B during the second half, of 50-s trials. Logistic functions were fitted to the relative response rates [percent responding on B (%B) vs time (t)] under each treatment; quantitative timing indices [T 50 (value of t when %B = 50) and Weber fraction] were compared among treatments.

Results

Quinpirole (0.04, 0.08 mg kg−1) reduced T 50. This effect was attenuated by D2-like receptor antagonists haloperidol (0.05, 0.1 mg kg−1), eticlopride (0.04, 0.08 mg kg−1) and sulpiride (30, 60 mg kg−1), but not by the D3 receptor-preferring antagonist nafadotride (0.5, 1 mg kg−1), the D4 receptor antagonist L-745870 (1, 3 mg kg−1) or the D1-like receptor antagonist SKF-83566 (0.015 mg kg−1).

Conclusions

Results suggest that quinpirole reduced T 50 via an action at D2 receptors. D1-like and D2-like receptors may mediate behaviourally similar but pharmacologically distinct effects on timing behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Most drugs acting at D1 dopamine receptors do not discriminate between D1 and D5 dopamine receptors and are, therefore, more precisely designated D1-like receptor agonists and antagonists. Similarly, most drugs acting at D2 receptors do not discriminate between D2, D3 and D4 receptors and are, therefore, designated D2-like receptor agonists and antagonists (Seeman and Van Tol 1994; Strange 2001). Throughout this paper, the terms D1-like and D2-like are used except where reference is made to the specific receptor type.

References

  • Al-Zahrani SS, Ho MY, Velazquez Martinez DN, Lopez Cabrera M, Bradshaw CM, Szabadi E (1996) Effect of destruction of the 5-hydroxytryptaminergic pathways on behavioural timing and “switching” in a free-operant psychophysical procedure. Psychopharmacology 127:346–352

    Article  PubMed  CAS  Google Scholar 

  • Areola OO, Jadhav AL (2001) Low-level lead exposure modulates effects of quinpirole and eticlopride on response rates in a fixed-interval schedule. Pharmacol Biochem Behav 69:151–156

    Article  PubMed  CAS  Google Scholar 

  • Audinot V, Newman-Tancredi A, Gobert A, Rivet JM, Brocco M, Lejeune F, Gluck L, Desposte I, Bervoets K, Dekeyne A, Millan MJ (1998) A comparative in vitro and in vivo pharmacological characterization of the novel dopamine D3 receptor antagonists (+)-S 14297, nafadotride, GR 103,691 and U 99194. J Pharmacol Exp Ther 287:187–197

    PubMed  CAS  Google Scholar 

  • Bayley PJ, Bentley GD, Dawson GR (1998) The effects of selected antidepressant drugs on timing behaviour in rats. Psychopharmacology 136:114–122

    Article  PubMed  CAS  Google Scholar 

  • Bizo LA, White KG (1994a) The behavioral theory of timing: reinforcer rate determines pacemaker rate. J Exp Anal Behav 61:19–33

    Article  PubMed  CAS  Google Scholar 

  • Bizo LA, White KG (1994b) Pacemaker rate and the behavioral theory of timing. J Exp Psychol Anim Behav Processes 20:308–321

    Article  Google Scholar 

  • Body S, Kheramin S, Mobini S, Ho M-Y, Velazquez-Martinez DN, Bradshaw CM, Szabadi E (2002) Antagonism by WAY-100635 of the effects of 8-OH-DPAT on performance on a free-operant timing schedule in intact and 5-HT-depleted rats. Behav Pharmacol 13:514–603

    Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda F, Bradshaw CM, Szabadi E (2003) Effects of a 5-HT2 receptor agonist, DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol 14:599–607

    Article  PubMed  CAS  Google Scholar 

  • Body S, Kheramin S, Ho M-Y, Miranda F, Bradshaw CM, Szabadi E (2004) Effects of fenfluramine on free-operant timing behaviour: evidence for involvement of 5-HT2A receptors. Psychopharmacology 176:154–165

    Article  PubMed  CAS  Google Scholar 

  • Body S, Asgari K, Cheung THC, Bezzina G, Fone KFC, Glennon JC, Bradshaw CM, Szabadi E (2006a) Evidence that the effect of 5-HT2 receptor stimulation on temporal differentiation is not mediated by receptors in the dorsal striatum. Behav Processes 71:258–267

    Article  PubMed  CAS  Google Scholar 

  • Body S, Cheung THC, Bezzina G, Asgari K, Fone KCF, Glennon JC, Bradshaw CM, Szabadi E (2006b) Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behaviour: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189:331–343

    Article  PubMed  CAS  Google Scholar 

  • Bowman BP, Vaughan SR, Walker QD, Davis SL, Little PJ, Scheffler NM, Thomas BF, Kuhn CM (1999) Effects of sex and gonadectomy on cocaine metabolism in the rat. J Pharmacol Exp Ther 290:1316–1323

    PubMed  CAS  Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  PubMed  CAS  Google Scholar 

  • Catania AC (1970) Reinforcement schedules and psychophysical judgments: a study of some temporal properties of behavior. In: Schoenfeld WN (ed) The theory of reinforcement schedules. Appleton, New York

    Google Scholar 

  • Catania AC, Reynolds GS (1968) A quantitative analysis of the responding maintained by interval schedules of reinforcement. J Exp Anal Behav 11(Suppl):327–383

    Article  Google Scholar 

  • Cheung THC, Bezzina G, Asgari K, Body S, Fone KFC, Bradshaw CM, Szabadi E (2006) Evidence for a role of D1 dopamine receptors in d-amphetamine’s effect on timing behaviour in the free-operant psychophysical procedure. Psychopharmacology 185:378–388

    Article  PubMed  CAS  Google Scholar 

  • Chiang TJ, Al-Ruwaitea ASA, Ho MY, Bradshaw CM, Szabadi E (1998) The influence of ‘switching’ on the psychometric function in the free-operant psychophysical procedure. Behav Processes 44:197–209

    Article  Google Scholar 

  • Chiang TJ, Al-Ruwaitea AS, Ho MY, Bradshaw CM, Szabadi E (1999) Effect of central 5-hydroxytryptamine depletion on performance in the free-operant psychophysical procedure: facilitation of switching, but no effect on temporal differentiation of responding. Psychopharmacology 143:166–173

    Article  PubMed  CAS  Google Scholar 

  • Chiang TJ, Al-Ruwaitea AS, Mobini S, Ho MY, Bradshaw CM, Szabadi E (2000a) The effect of d-amphetamine on performance on two operant timing schedules. Psychopharmacology 150:170–184

    Article  PubMed  CAS  Google Scholar 

  • Chiang TJ, Al-Ruwaitea AS, Mobini S, Ho MY, Bradshaw CM, Szabadi E (2000b) Effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on performance on two operant timing schedules. Psychopharmacology 151:379–391

    Article  PubMed  CAS  Google Scholar 

  • Cook CD, Beardsley PM (2003) The modulatory actions of dopamine D2/3 agonists and antagonists on the locomotor-activating effects of morphine and caffeine in mice. Pharmacol Biochem Behav 75:363–371

    Article  PubMed  CAS  Google Scholar 

  • Deng Y-P, Lei W-L, Reiner A (2006) Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. J Chem Neuroanat 32:101–116

    Article  PubMed  CAS  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1996) Behavioural effects in the rat of the putative dopamine D-3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine. Psychopharmacology 124:231–240

    Article  PubMed  CAS  Google Scholar 

  • Eckerman DA, Segbefia D, Manning S, Breese GS (1987) Effects of methylphenidate and d-amphetamine on timing in the rat. Pharmacol Biochem Behav 27:513–515

    Article  PubMed  CAS  Google Scholar 

  • Enguehard-Gueiffier C, Hubner H, El Hakmaoui A, Allouchi H, Gmeiner P, Argiolas A, Melis MR, Gueiffier A (2006) 2-[(4-phenylpiperazin-1-yl)methyl]imidazo(di)azines as selective d-4-ligands. Induction of penile erection by 2-[4-(2-methoxyphenyl)piperazin-1-ylmethyl]imidazo[1,2-a]pyridine (PIP3EA), a potent and selective D-4 partial agonist. J Med Chem 49:3938–3947

    Article  PubMed  CAS  Google Scholar 

  • Flietstra RJ, Levant B (1998) Comparison of D2 and D3 dopamine receptor affinity of dopaminergic compounds in rat brain. Life Sci 62:1825–1831

    Article  PubMed  CAS  Google Scholar 

  • Fowler SC, Lion JR (1998) Haloperidol, raclopride, and eticlopride induce microcatalepsy during operant performance in rats, but clozapine and SCH 23390 do not. Psychopharmacology 140:81–90

    Article  PubMed  CAS  Google Scholar 

  • Frederick DL, Allen JD (1996) Effects of selective dopamine D1- and D2-agonists and antagonists on timing performance in rats. Pharmacol Biochem Behav 53:759–764

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (2004) Basal ganglia. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, San Diego

    Google Scholar 

  • Gerfen CR, Engber TM, Mahon LC, Susel Z, Chase TN, Monsna FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    PubMed  CAS  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel C (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Haleem DJ, Shireen E, Haleem MA (2004) Somatodendritic and postsynaptic serotonin-1A receptors in the attenuation of haloperidol-induced catalepsy. Prog Neuropsychopharmacol Biol Psychiatry 28:1323–1329

    Article  PubMed  CAS  Google Scholar 

  • Hinton SC, Meck WH (1997) How time flies: functional and neural mechanisms of interval timing. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobehavioural analyses. Elsevier, Amsterdam

    Google Scholar 

  • Ho MY, Velazquez-Martinez DN, Bradshaw CM, Szabadi E (2002) 5-Hydroxytryptamine and interval timing behaviour. Pharmacol Biochem Behav 71:773–785

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Crombag HS, Robinson TE, Becker JB (2004) Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 29:81–85

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64:291–370

    Article  PubMed  CAS  Google Scholar 

  • Killeen PR, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–295

    Article  PubMed  CAS  Google Scholar 

  • Killeen PR, Fetterman JG, Bizo LA (1997) Time’s causes. In: Bradshaw CM, Szabadi E (eds) Time and behaviour: psychological and neurobehavioural analyses. Elsevier, Amsterdam

    Google Scholar 

  • Kraemer PJ, Randall CK, Dose JM, Brown RW (1997) Impact of d-amphetamine on temporal estimation in pigeons tested with a production procedure. Pharmacol Biochem Behav 58:323–327

    Article  PubMed  CAS  Google Scholar 

  • Kuhn CM, Walker QD, Li ST (2001) Sex, steroids, and stimulant sensitivity. Ann N Y Acad Sci 937:188–201

    Article  PubMed  CAS  Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  PubMed  CAS  Google Scholar 

  • Leriche L, Schwartz JC, Sokoloff P (2003) The dopamine D3 receptor mediates locomotor hyperactivity induced by NMDA receptor blockade. Neuropsychopharmacology 45:174–181

    Article  CAS  Google Scholar 

  • Levant B (1997) The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev 49:231–252

    PubMed  CAS  Google Scholar 

  • Levant B (2002) Novel drug interactions at D2 dopamine receptors: modulation of [3H]quinpirole binding by monoamine oxidase inhibitors. Life Sci 71:2691–2700

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Vansell NR (1997) In vivo occupancy of D2 dopamine receptors by nafadotride. Neuropsychopharmacology 17:67–71

    Article  PubMed  CAS  Google Scholar 

  • Levant B, Grigoriadis DE, Desouza EB (1992) Characterization of [3H] quinpirole binding to D2-like dopamine-receptors in rat-brain. J Pharmacol Exp Ther 262:929–935

    PubMed  CAS  Google Scholar 

  • Levant B, Moehlenkamp JD, Morgan KA, Leonard NL, Cheng CC (1996) Modulation of [3H]quinpirole binding in brain by monoamine oxidase inhibitors: evidence for a potential novel binding site. J Pharmacol Exp Ther 278:145–153

    PubMed  CAS  Google Scholar 

  • Levesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 102:11888–11893

    Article  PubMed  CAS  Google Scholar 

  • MacDonald CJ, Meck WH (2005) Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology 182:232–244

    Article  PubMed  CAS  Google Scholar 

  • Machado A, Guilhardi P (2000) Shifts in the psychometric function and their implications for models of timing. J Exp Anal Behav 74:25–54

    Article  PubMed  CAS  Google Scholar 

  • Maricq AV, Roberts S, Church RM (1981) Methamphetamine and time estimation. J Exp Psychol Anim Behav Processes 7:18–30

    Article  CAS  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn Brain Res 21:139–170

    Article  Google Scholar 

  • Matell MS, King GR, Meck WH (2004) Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci 118:150–156

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3:227–242

    Article  CAS  Google Scholar 

  • Meck WH, Benson AM (2002) Dissecting the brain’s internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn 48:195–211

    Article  PubMed  Google Scholar 

  • Melis MR, Succu S, Sanna F, Melis T, Mascia MS, Enguehard-Gueiffier C, Hubner H, Gmeiner P, Gueiffier A, Argiolas A (2006) PIP3EA and PD-168077, two selective dopamine D4 receptor agonists, induce penile erection in male rats: site and mechanism of action in the brain. Eur J Neurosci 24:2021–2030

    Article  PubMed  Google Scholar 

  • Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 303:791–804

    Article  PubMed  CAS  Google Scholar 

  • Moreland RB, Moreland RB, Nakane M, Donnelly-Roberts DL, Miller LN, Chang RJ, Uchic ME, Terranova MA, Gubbins EJ, Helfrich RJ, Namovic MT, El-Kouhen OF, Masters JN, Brioni JD (2004) Comparative pharmacology of human dopamine D2-like receptor stable cell lines coupled to calcium flux through Gαqo5. Biochem Pharmacol 68:761–772

    Article  PubMed  CAS  Google Scholar 

  • Niznik HB, Van Tol HHM (1992) Dopamine receptor genes—new tools for molecular psychiatry. J Psychiatry Neurosci 17:158–180

    PubMed  CAS  Google Scholar 

  • Parent A, Levesque M, Parent M (2001) A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord 7:193–198

    Article  PubMed  Google Scholar 

  • Patel S, Freedman S, Chapman KL, Emms F, Fletcher AE, Knowles M, Marwood R, McAllister G, Myers J, Patel S, Curtis N, Kulagowski JJ, Leeson PD, Ridgill M, Graham M, Matheson S, Rathbone D, Watt AP, Bristow LJ, Rupniak NMJ, Baskin E, Lynch JJ, Ragan CI (1997) Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J Pharmacol Exp Ther 283:636–647

    PubMed  CAS  Google Scholar 

  • Pugsley TA, Shih YH, Whetzel SZ, Zoski K, Van Leeuwen D, Akunne H, Mackenzie R, Heffner TG, Wustrow D, Wise LD (2002) The discovery of PD 89211 and related compounds: selective dopamine D4 receptor antagonists. Prog Neuropsychopharmacol Biol Psychiatry 26:219–226

    Article  PubMed  CAS  Google Scholar 

  • Reavill C, Taylor SG, Wood MD, Ashmeade T, Austin NE, Avenell KY, Boyfield I, Branch CL, Cilia J, Coldwell MC, Hadley MS, Hunter AJ, Jeffrey P, Jewitt F, Johnson CN, Jones DNC, Medhurst AD, Middlemiss DN, Nash DJ, Riley GJ, Routledge C, Stemp G, Thewlis KM, Trail B, Vong AKK, Hagan JJ (2000) Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011-A. J Pharmacol Exp Ther 294:1154–1165

    PubMed  CAS  Google Scholar 

  • Roberts S (1981) Isolation of an internal clock. J Exp Psychol Anim Behav Processes 7:242–268

    Article  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Maio C, Champion M, Turski T, Kovach J (1996) Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology 125:105–112

    Article  PubMed  CAS  Google Scholar 

  • Saulsgiver KA, McClure EA, Wynne CDL (2006) Effects of d-amphetamine on the behavior of pigeons exposed to the peak procedure. Behav Processes 71:268–285

    Article  PubMed  CAS  Google Scholar 

  • Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P, Costentin J, Schoenfelder A, Garrido F, Mann A, Wermuth CG (1995) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 275:1239–1246

    PubMed  CAS  Google Scholar 

  • Schindler CW, Carmona GN (2002) Effects of dopamine agonists and antagonists on locomotor activity in male and female rats. Pharmacol Biochem Behav 72:857–863

    Article  PubMed  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, Luyten WHML, VanGompel P, Lesage AS, DeLoore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  PubMed  CAS  Google Scholar 

  • Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 153:119–133

    Google Scholar 

  • Stubbs DA (1976) Scaling of stimulus duration by pigeons. J Exp Anal Behav 26:15–25

    Article  PubMed  CAS  Google Scholar 

  • Stubbs DA (1980) Temporal discrimination and a free-operant psychophysical procedure. J Exp Anal Behav 33:167–185

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Todd RL, Heller A, O’Malley KL (1994) Pharmacological functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther 268:495–502

    PubMed  CAS  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik NB, Olivier C (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  • Wanibuchi F, Usuda S (1990) Synergistic effects between D1 and D2 dopamine antagonists on catalepsy in rats. Psychopharmacology 102:339–342

    Article  PubMed  CAS  Google Scholar 

  • Willner P, Sampson D, Phillips G, Muscat R (1990) A matching law analysis of the effects of dopamine receptor antagonists. Psychopharmacology 101:560–567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BBSRC. We are grateful to Ms. V. K. Bak for skilled technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Bradshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, T.H.C., Bezzina, G., Hampson, C.L. et al. Effect of quinpirole on timing behaviour in the free-operant psychophysical procedure: evidence for the involvement of D2 dopamine receptors. Psychopharmacology 193, 423–436 (2007). https://doi.org/10.1007/s00213-007-0798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0798-8

Keywords

Navigation