Skip to main content
Log in

Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

By data mining in the sequence of the Corynebacterium glutamicum ATCC 13032 genome, six putative mycolyltransferase genes were identified that code for proteins with similarity to the N-terminal domain of the mycolic acid transferase PS1 of the related C. glutamicum strain ATCC 17965. The genes identified were designated cop1, cmt1, cmt2, cmt3, cmt4, and cmt5 (cmt from corynebacterium mycolyltransferases). cop1 encodes a protein of 657 amino acids, which is larger than the proteins encoded by the cmt genes with 365, 341, 483, 483, and 411 amino acids. Using bioinformatics tools, it was shown that all six gene products are equipped with signal peptides and esterase domains. Proteome analyses of the cell envelope of C. glutamicum ATCC 13032 resulted in identification of the proteins Cop1, Cmt1, Cmt2, and Cmt4. All six mycolyltransferase genes were used for mutational analysis. cmt4 could not be mutated and is considered to be essential. cop1 was found to play an additional role in cell shape formation. A triple mutant carrying mutations in cop1, cmt1, and cmt2 aggregated when cultivated in MM1 liquid medium. This mutant was also no longer able to synthesize trehalose dicorynomycolate (TDCM). Since single and double mutants of the genes cop1, cmt1, and cmt2 could form TDCM, it is concluded that the three genes, cop1, cmt1, and cmt2, are involved in TDCM biosynthesis. The presence of the putative esterase domain makes it highly possible that cop1, cmt1, and cmt2 encode enzymes synthesizing TDCM from trehalose monocorynomycolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Alshamaony L, Goodfellow M, Minnikin DE (1976) Free mycolic acids as a criteria in the classification of Nocardia and the 'rhodochrous' complex. J Gen Microbiol 92:188–199

    CAS  PubMed  Google Scholar 

  • Barksdale, L (1970) Corynebacterium diphteriae and its relatives. Bacteriol Rev 4:378–422.

    CAS  PubMed  Google Scholar 

  • Belsisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major Antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422

    Article  CAS  PubMed  Google Scholar 

  • Blanchard JS (1996) Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem 65: 215–239

    Article  CAS  PubMed  Google Scholar 

  • Bonnassie S, Oreglia J, Trautwetter A, Sicard AM (1990) Isolation and chararcterization of a restriction and modification deficient mutant of Brevibacterium lactofermentum. FEMS Microbiol Lett 60:143–146

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63

    Article  CAS  PubMed  Google Scholar 

  • Chami M, Bayan N, Peyret JL, Gulik-Krzywicki T, Leblon G, Shechter E (1997) The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23: 482–492

    Google Scholar 

  • Chun J, Kang S-O, Hah YC, Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J Indust Microbiol 17:205–213

    CAS  Google Scholar 

  • Collins MD, Goodfellow M, Minnikin DE (1982) A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 128:129–149.

    CAS  PubMed  Google Scholar 

  • Daffé M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203

    PubMed  Google Scholar 

  • Dittmer JFC, Lester RL (1964) A simple specific spray for the detection of phopholipids on thin layer chromatography. J Lipid Res 5:126–127

    CAS  Google Scholar 

  • Draper P (1998) The outer parts of the mycobacterial envelope as permeability barriers. Front Biosci 3: D1253-D1216

    CAS  PubMed  Google Scholar 

  • Eggeling L, Sahm H (2001) The cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 92:201–213

    Article  CAS  Google Scholar 

  • Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60: 209–220

    CAS  PubMed  Google Scholar 

  • George KM, Yuan Y, Sherman DR, Barry 3rd CE (1995) The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 270:27292–27298

    CAS  PubMed  Google Scholar 

  • Grant SGN, Jesse J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci 87: 4645–4649

    CAS  PubMed  Google Scholar 

  • Haynes JA, Britz ML (1989) Electrotransformation of Brevibacterium lactorfermentum and Corynebacterium glutamicum: growth in Tween 80 increases transformation frequencies. FEMS Microbiol Lett 61: 329–334

    Article  CAS  Google Scholar 

  • Heijne von G (1990) The signal peptide. J Membr Biol 115:195–201

    PubMed  Google Scholar 

  • Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90:5011–5015

    CAS  PubMed  Google Scholar 

  • Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Pühler A, Bendt AK, Krämer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8: 189–191

    PubMed  Google Scholar 

  • Horton RM (1995) PCR-mediated recombination and mutagenesis: SOEing together tailor-made genes. Mol Biotechnol 3: 93–99

    CAS  PubMed  Google Scholar 

  • Jackson M, Raynaud C, Lenéelle MA, Guilhot C, Laurent-Winter C, Ensergueix D, Gicquel B, Daffé M (1999) Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31: 1573–1587

    Article  CAS  PubMed  Google Scholar 

  • Joliff G, Mathieu L, Hahn V, Bayan N, Duchiron F, Renaud M, Shechter E, Leblon G (1992) Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol 6: 2349–2362

    CAS  PubMed  Google Scholar 

  • Kalinowski J, Bathe B, Bischoff N, Bott M, Burkovski A, DuschN, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol (in press)

  • Kilburn JO, Takayama K, Amstrong EL (1982) Synthesis of trehalose dimycolate (cord factor) by a cell-free system of Mycobacterium smegmatis. Biochem Biophys Res Commun 108:132–139

    CAS  PubMed  Google Scholar 

  • Krämer R (1994) Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–93

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Leuchtenberger W (1996) Amino acids: technical production and use. In: Rehm HJ, Reed G, Puehler A, Stadler P (eds) Biotechnology. VCH, Weinheim Germany, pp 465–502

  • Liu J, Barry 3rd CE, Besra GS, Nikaido H (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acid Res 30: 281–283

    Article  CAS  PubMed  Google Scholar 

  • Marienfeld S, Uhlemann E-M, Schmid R, Krämer R, and Burkovski A (1997) Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie van Leeuwenhoek 72:291–297

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, and Pühler A (2003) GenDB-an open source genome annotation system for prokaryotic genomes. Nucleic Acid Res 31:2187–2195

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE (1982) Complex lipids: Their chemistry, biosynthesis and roles. In: Ratledge C, Stanford J (eds) The biology of mycobacteria, vol 1. Academic, London, pp 98–184

  • Minnikin DE, Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Goodfellow M, Board RG (eds) Microbiological classification and identification. Academic, London, pp 189–239

  • Minnikin DE, O'Donnel AG (1984) Actinomycetes envelope lipid and peptidoglycan composition. In: Goodfellow M, Mordarski M, Williams ST (eds) The Biology of Actinomycetes. Academic Press, London pp 337–388

  • Minnikin DE, Goodfellow M, O'Donnel AG (1978) Lipid composition in the classification and identification of coryneform and related taxa. In: Bousfield IJ, AG Calley (eds) Coryneform Bacteria. Academic Press, London, pp 85–160

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8: 581–599

    CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Peyret JL, Bayan M, Joliff G, Gulik-Krzywicki T, Mathieu L, Shechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

    CAS  PubMed  Google Scholar 

  • Philipp WJ, Poulet S, Eiglmeier K, Pascopella L, Balasubramanian V, Heym B, Bergh S, Bloom BR, Jacops WR Jr, Cole ST (1996) An integrated map of the genome of the tubercle bacillus, Mycobycterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc Natl Acad Sci USA 93:3132–3137

    Article  CAS  PubMed  Google Scholar 

  • Puech V, Bayan N, Salim K, Leblon G, Daffé M (2000) Characterization of the in vivo acceptors of the mycolyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigen 85. Mol Microbiol 35:1026–1041

    Article  CAS  PubMed  Google Scholar 

  • Puech V, Chami M, Lemassu A, Lanéelle M-A, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

    CAS  PubMed  Google Scholar 

  • Puech V, Guilhot C, Perez E, Tropis M, Armitige LY, Gicquel B, Daffé M, (2002) Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycolyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Hänel F, Hilliger M (1985) Freeze-fracture observations of Corynebacterium glutamicum: the occurrence of an outer-membrane like structure and the influence of temperature on the cytoplasmatic membrane. J Basic Microbiol 25:527–536

    CAS  PubMed  Google Scholar 

  • Ronning DR, Klabunde T, Besra GS, Vissa VD, Belisle JT, Sacchettini JC, (2000) Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Biol 72: 141–146

    Google Scholar 

  • Saitou M, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sathyamoorthy N, Takayama T (1987) Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium tuberculosis. J Biol Chem 262:13417–13423

    CAS  PubMed  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–7

    PubMed  Google Scholar 

  • Southern EMR, Anand R, Brown WRA, Fletcher DS (1987) A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res 15:5925–5942

    Google Scholar 

  • Suggs SV, Hirose T, Miyake T, Kawashima EH, Johnson MJ, Itakura K, Wallace RB (1981) Use of synthetic oligodeoxyribonucleotides for the isolation of specific cloned DNA sequences. In: Brown DD, Fox CF (eds) Developemental biology using purified genes. Academic , New York, pp 683–693

  • Tauch A, Kassing F, Kalinowski J, Pühler A (1995) The Corynebacterium xerosis composite transposon Tn 5432 consists of two identical insertion sequences, designated IS 1249, flanking the erythromycin resistance gene ermCX. Plasmid 34:119–131

    Article  CAS  PubMed  Google Scholar 

  • Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J, (2002) Efficient electrotransformation of Corynebacterium diphteriae with a mini-replicon derived from Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed H, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    CAS  PubMed  Google Scholar 

  • Wiker HG, Harboe M, Nagai S, Bennedsen J (1990) Quantitative and qualitative studies on the major extracellular antigen of Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG. Am Rev Respir Dis 141:830–838

    CAS  PubMed  Google Scholar 

  • Wohlleben W, Muth G, Kalinowski J (1993) Genetic engineering of gram positive bacteria. In: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology. VCH, Weinheim, Germany, pp 457–505

  • Young LJ, Lee EY, To HA, Bookstein R, Shew JY, Donoso LA, Sery T, Giblin M, Shields JA, Lee WH (1988) Human Esterase D gene: complete cDNA sequence, genomic structure, and application in the genetic diagnosis of human retinoblastoma. Hum Genet 79:137–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Degussa AG for financial support. S.B. acknowledges a grant from Graduiertenkolleg GRK 35/3–98 funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Kalinowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, S., Niehaus, K., Pühler, A. et al. Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol 180, 33–44 (2003). https://doi.org/10.1007/s00203-003-0556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0556-1

Keywords

Navigation