Skip to main content

Advertisement

Log in

Target-matching test problem for multiobjective topology optimization using genetic algorithms

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper describes the multiobjective topology optimization of continuum structures solved as a discrete optimization problem using a multiobjective genetic algorithm (GA) with proficient constraint handling. Crucial to the effectiveness of the methodology is the use of a morphological geometry representation that defines valid structural geometries that are inherently free from checkerboard patterns, disconnected segments, or poor connectivity. A graph- theoretic chromosome encoding, together with compatible reproduction operators, helps facilitate the transmission of topological/shape characteristics across generations in the evolutionary process. A multicriterion target-matching problem developed here is a novel test problem, where a predefined target geometry is the known optimum solution, and the good results obtained in solving this problem provide a convincing demonstration and a quantitative measure of how close to the true optimum the solutions achieved by GA methods can be. The methodology is then used to successfully design a path-generating compliant mechanism by solving a multicriterion structural topology optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Acad Sci Paris Serie I 334:1–6

    Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Deb K (2001) Multi-Objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  • Gross J, Yellen J (1999) Graph theory and its applications. CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Hamda H, Jouve F, Lutton E, Schoenauer M, Sebag M (2002) Compact unstructured representations for evolutionary design. Appl Intell 16:139–155

    Article  MATH  Google Scholar 

  • Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K (2000) Continuum structural topology design with genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):339–356

    Article  MATH  Google Scholar 

  • Kane C, Schoenauer M (1996) Topological optimum design using genetic algorithms. Control Cybern 25(5):1059–1088

    MATH  Google Scholar 

  • Lu KJ, Kota S (2005) An effective method of synthesizing compliant adaptive structures using load path representation. J Intell Mater Syst Struct 16:307–317

    Article  Google Scholar 

  • Lu KJ, Kota S (2006) Topology and dimensional synthesis of compliant mechanisms using discrete optimization. ASME J Mech Des 128:1080–1091

    Article  Google Scholar 

  • Luo Z, Chen L, Yang J, Zhang Y, Abdel-Malek K (2005) Compliant mechanism design using multi-objective topology optimization scheme of continuum structures. Struct Multidisc Optim 30(2):142–154

    Article  Google Scholar 

  • Maddisetty H, Frecker M (2004) Dynamic topology optimization of compliant mechanisms and piezoceramic actuators. ASME J Mech Des 126:975–983

    Article  Google Scholar 

  • Parsons R, Canfield SL (2002) Developing genetic programming techniques for the design of compliant mechanisms. Struct Multidisc Optim 24:78–86

    Article  Google Scholar 

  • Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705

    Article  MATH  Google Scholar 

  • Rahmatalla S, Swan CC (2004) Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int J Numer Methods Eng 62(1):1579–1605

    Article  Google Scholar 

  • Ray T, Tai K, Seow KC (2001) Multiobjective design optimization by an evolutionary algorithm. Eng Optim 33:399–424

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Saxena A (2005) Synthesis of compliant mechanisms for path generation using genetic algorithm. ASME J Mech Des 127:745–752

    Article  Google Scholar 

  • Saxena A, Ananthasuresh GK (2001) Topology synthesis of compliant mechanisms for nonlinear force deflection and curved path specifications. ASME J Mech Des 123:33–42

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Tai K, Akhtar S (2005) Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme. Struct Multidisc Optim 30(2):113–127

    Article  Google Scholar 

  • Tai K, Chee TH (1998) Genetic algorithm with structural morphology representation for topology design optimization. In: Gentle C, Hull J (eds) Mechanics in design—Proceedings of the 2nd international conference on mechanics in design, Nottingham, 6–9 July 1998, pp 827–836

  • Tai K, Chee TH (2000) Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. ASME J Mech Des 122(4):560–566

    Article  Google Scholar 

  • Tai K, Prasad J (2005) Multiobjective topology optimization using a genetic algorithm and a morphological representation of geometry. In: 6th world congress on structural and multidisciplinary optimization, Rio de Janeiro, Brazil, 30 May– 3 June 2005, paper no. 1711

  • Tai K, Cui GY, Ray T (2002) Design synthesis of path generating compliant mechanisms by evolutionary optimization of topology and shape. ASME J Mech Des 124(3):492–500

    Article  Google Scholar 

  • Wang SY, Tai K (2004) Graph representation for structural topology optimization using genetic algorithms. Comput Struct 82:1609–1622

    Article  Google Scholar 

  • Wang SY, Tai K (2005) Structural topology design optimization using genetic algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36–38):3749–3770

    Article  MATH  Google Scholar 

  • Wang N, Tai K (2006) A structural optimization problem formulation for design of compliant gripper using a genetic algorithm. In: ECCM-2006 Ű—III European conference on computational mechanics, Lisbon, Portugal, 5-8 June 2006, paper no. 2638

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  Google Scholar 

  • Wang SY, Tai K, Quek ST (2006a) Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates. Smart Mater Struct 15:253–269

    Article  Google Scholar 

  • Wang SY, Tai K, Wang MY (2006b) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65:18–44

    Article  MATH  Google Scholar 

  • Woon SY, Tong L, Querin OM, Steven GP (2005) Effective optimization of continuum topologies through a multi-GA system. Comput Methods Appl Mech Eng 194:3416–3437

    Article  MATH  Google Scholar 

  • Yang RJ, Chuang CH (1994) Optimal topology design using linear programming. Comput Struct 52(2):265–275

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, K., Prasad, J. Target-matching test problem for multiobjective topology optimization using genetic algorithms. Struct Multidisc Optim 34, 333–345 (2007). https://doi.org/10.1007/s00158-006-0082-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-006-0082-2

Keywords

Navigation