Skip to main content
Log in

Temperature- and time-dependent changes in TLR2-activated microglial NF-κB activity and concentrations of inflammatory and anti-inflammatory factors

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Therapeutic hypothermia protects neurons following injury to the central nervous system (CNS). Microglia express toll-like receptors (TLRs) that play significant roles in pathological processes in sterile CNS injury. We have examined the effects of culture temperature on the TLR2-activated microglial production of cytokines and nitric oxide (NO), which are known to be associated with CNS damage, and the possible involvement of nuclear factor-κB (NF-κB) activation underlying such effects.

Methods

Rat microglia were cultured with a selective TLR2 agonist, Pam3CSK4, under hypothermic, normothermic, and hyperthermic conditions, and with Pam3CSK4 in the presence of a NF-κB activation inhibitor at 37 °C. Cytokine and NO levels and NF-κB p65 activation were measured.

Results

The production of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and NO and the activation of NF-κB p65 were reduced by hypothermia, but augmented by hyperthermia at 3–6, 24–48, 48, and 0.5 h, post-treatment initiation, respectively. Pharmacological inhibition of NF-κB activation impaired the Pam3CSK4-induced TNF-α, IL-10, and NO production.

Conclusions

In TLR2-activated microglia, hypothermia reduced, while hyperthermia increased, the early activation of NF-κB and the subsequent NF-κB-mediated production of TNF-α, IL-10, and NO in a time-dependent manner, suggesting that attenuation of these factors via suppression of NF-κB in microglia is one possible neuroprotective mechanism of therapeutic hypothermia. Moreover, temperature-dependent changes in microglial TNF-α production during the early phase and IL-10 and NO production during the late phase indicate that these factors might be useful as clinical markers to monitor hypothermia-related neuronal protection and hyperthermia-related neuronal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  2. Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76:514–519

    Article  PubMed  CAS  Google Scholar 

  3. Johnson GB, Brunn GJ, Platt JL (2003) Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol 23:15–44

    Article  PubMed  CAS  Google Scholar 

  4. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ (2007) Reduced cerebral ischemia–reperfusion injury in toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514

    Article  PubMed  CAS  Google Scholar 

  5. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33

    Article  PubMed  CAS  Google Scholar 

  6. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Röhr C, Prinz V, König J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579

    Article  PubMed  CAS  Google Scholar 

  7. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW, Schweitzer JB, Kalbfleisch JH, Li C (2007) Activation of toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190:101–111

    Article  PubMed  CAS  Google Scholar 

  8. Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28:2320–2331

    Article  PubMed  CAS  Google Scholar 

  9. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S (2008) Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 5:43. doi:10.1186/1742-2094-5-43

    Article  PubMed  Google Scholar 

  10. Hoffmann O, Braun JS, Becker D, Halle A, Freyer D, Dagand E, Lehnardt S, Weber JR (2007) TLR2 mediates neuroinflammation and neuronal damage. J Immunol 178:6476–6481

    PubMed  CAS  Google Scholar 

  11. Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H, Millward JM, Landmann R, Rivest S, Finsen B, Owens T (2006) Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 26:12826–12837

    Article  PubMed  CAS  Google Scholar 

  12. Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH (1993) Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 13:105–115

    Article  PubMed  CAS  Google Scholar 

  13. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, Moroni F, Chiarugi A (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103:590–603

    Article  PubMed  CAS  Google Scholar 

  14. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  PubMed  CAS  Google Scholar 

  15. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  PubMed  CAS  Google Scholar 

  16. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336:540–546

    Article  PubMed  CAS  Google Scholar 

  17. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  18. Si QS, Nakamura Y, Kataoka K (1997) Hypothermic suppression of microglial activation in culture: inhibition of cell proliferation and production of nitric oxide and superoxide. Neuroscience 81:223–229

    Article  PubMed  CAS  Google Scholar 

  19. Maekawa S, Aibiki M, Si QS, Nakamura Y, Shirakawa Y, Kataoka K (2002) Differential effects of lowering culture temperature on mediator release from lipopolysaccharide-stimulated neonatal rat microglia. Crit Care Med 30:2700–2704

    Article  PubMed  CAS  Google Scholar 

  20. Gibbons H, Sato TA, Dragunow M (2003) Hypothermia suppresses inducible nitric oxide synthase and stimulates cyclooxygenase-2 in lipopolysaccharide stimulated BV-2 cells. Brain Res Mol Brain Res 110:63–75

    Article  PubMed  CAS  Google Scholar 

  21. Matsui T, Kakeda T (2008) IL-10 production is reduced by hypothermia but augmented by hyperthermia in rat microglia. J Neurotrauma 25:709–715

    Article  PubMed  Google Scholar 

  22. Soukup J, Zauner A, Doppenberg EM, Menzel M, Gilman C, Young HF, Bullock R (2002) The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome. J Neurotrauma 19:559–571

    Article  PubMed  Google Scholar 

  23. Bessler WG, Johnson RB, Wiesmüller K, Jung G (1982) B-lymphocyte mitogenicity in vitro of a synthetic lipopeptide fragment derived from bacterial lipoprotein. Hoppe Seylers Z Physiol Chem 363:767–770

    Article  PubMed  CAS  Google Scholar 

  24. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169:10–14

    PubMed  CAS  Google Scholar 

  25. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia–reperfusion injury. Shock 32:4–16

    Article  PubMed  CAS  Google Scholar 

  26. Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Fukazawa T, Hayashi H (2003) Discovery of quinazolines as a novel structural class of potent inhibitors of NF-kappa B activation. Bioorg Med Chem 11:383–391

    Article  PubMed  CAS  Google Scholar 

  27. Lancelot E, Lecanu L, Revaud ML, Boulu RG, Plotkine M, Callebert J (1998) Glutamate induces hydroxyl radical formation in vivo via activation of nitric oxide synthase in Sprague–Dawley rats. Neurosci Lett 242:131–134

    Article  PubMed  CAS  Google Scholar 

  28. Woodroofe MN, Sarna GS, Wadhwa M, Hayes GM, Loughlin AJ, Tinker A, Cuzner ML (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 33:227–236

    Article  PubMed  CAS  Google Scholar 

  29. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54:99–125

    Article  PubMed  CAS  Google Scholar 

  30. Hanisch UK, Johnson TV, Kipnis J (2008) Toll-like receptors: roles in neuroprotection? Trends Neurosci 31:176–182

    Article  PubMed  CAS  Google Scholar 

  31. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  32. Aibiki M, Maekawa S, Ogura S, Kinoshita Y, Kawai N, Yokono S (1999) Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans. J Neurotrauma 16:225–232

    Article  PubMed  CAS  Google Scholar 

  33. Yamaguchi S, Nakahara K, Miyagi T, Tokutomi T, Shigemori M (2000) Neurochemical monitoring in the management of severe head-injured patients with hypothermia. Neurol Res 22:657–664

    PubMed  CAS  Google Scholar 

  34. Knoblach SM, Faden AI (1998) Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 153:143–151

    Article  PubMed  CAS  Google Scholar 

  35. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16:851–863

    Article  PubMed  CAS  Google Scholar 

  36. Bell MJ, Kochanek PM, Doughty LA, Carcillo JA, Adelson PD, Clark RS, Wisniewski SR, Whalen MJ, DeKosky ST (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14:451–457

    Article  PubMed  CAS  Google Scholar 

  37. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    Article  Google Scholar 

  38. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121

    Article  PubMed  CAS  Google Scholar 

  39. Minamisawa H, Smith ML, Siesjo BK (1990) The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 28:26–33

    Article  PubMed  CAS  Google Scholar 

  40. Pappas TC, Decorti F, Macdonald NJ, Neet KE, Taglialatela G (2003) Tumour necrosis factor-alpha- vs. growth factor deprivation-promoted cell death: different receptor requirements for mediating nerve growth factor-promoted rescue. Aging Cell 2:83–92

    Article  PubMed  CAS  Google Scholar 

  41. Wada K, Okada N, Yamamura T, Koizumi S (1996) Nerve growth factor induces resistance of PC12 cells to nitric oxide cytotoxicity. Neurochem Int 29:461–467

    Article  PubMed  CAS  Google Scholar 

  42. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA (2003) Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab 23:589–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grant-in-Aid for Young Scientists (B), No. 22791435 to T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, T., Tasaki, M., Yoshioka, T. et al. Temperature- and time-dependent changes in TLR2-activated microglial NF-κB activity and concentrations of inflammatory and anti-inflammatory factors. Intensive Care Med 38, 1392–1399 (2012). https://doi.org/10.1007/s00134-012-2591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-012-2591-3

Keywords

Navigation