Skip to main content
Log in

Endothelium: the main actor in the remodelling of the retinal microvasculature in diabetes

  • For Debates
  • Published:
Diabetologia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

NO:

Nitric oxide

VEGF:

vascular endothelial growth factor

References

  1. Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodelling. N Engl J Med 330: 1431–1437

    Article  CAS  PubMed  Google Scholar 

  2. Kohner EM, Hamilton AM, Saunders SJ, Sutcliffe BA, Bulpitt CJ (1975) The retinal blood flow in diabetes. Diabetologia 11: 27–33

    Article  CAS  PubMed  Google Scholar 

  3. Grunwald JE, Riva CE, Baine J, Brucker AJ (1992) Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33: 356–363

    CAS  PubMed  Google Scholar 

  4. Atherton A, Hill DW, Keen H, Young S, Edwards EJ (1980) The effect of acute hyperglycaemia on the retinal circulation of the normal cat. Diabetologia 18: 233–237

    Article  CAS  PubMed  Google Scholar 

  5. Cooke JP, Rossitch E, Andon NA, Loscalzo J, Dzau VJ (1991) Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88: 1663–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuchan MJ, Frangos JA (1993) Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol 264:H150–H156

    CAS  PubMed  Google Scholar 

  7. Frangos JA, Eskin SG, McIntyre LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227: 1477–1479

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Ghatei MA, Lam HC, O'Halloran DJ, Bloom SR (1990) Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 33: 306–310

    Article  CAS  PubMed  Google Scholar 

  9. Kawamura M, Naruse K, Ohgawara H et al. (1992) Increased plasma endothelin in NIDDM patients with retinopathy. Diabetes Care 15: 1396–1397

    Article  CAS  Google Scholar 

  10. Bertello P, Molino P, Veglio F et al. (1994) Plasma endothelin in NIDDM patients with and without complications. Diabetes Care 17: 574–577

    Article  CAS  PubMed  Google Scholar 

  11. Dollery CT, Friedman LA, Hensby CN et al. (1979) Circulating prostacyclin may be reduced in diabetes. Lancet II:1365

    Article  Google Scholar 

  12. Carreras LO, Chamone DAF, Klerckx P, Wermylen J (1980) Decreased vascular prostacyclin (PGI2) in diabetic rats. Stimulation of PGI2 release in normal and diabetic rats by the antithrombotic compound Bay G 6375. Thromb Res 19: 663–670

    Article  CAS  PubMed  Google Scholar 

  13. Alessandrini P, McRae J, Feman S, FitzGerald GA (1988) Thromboxane biosynthesis and platelet function in type diabetes mellitus. N Engl J Med 319: 208–212

    Article  CAS  PubMed  Google Scholar 

  14. Tesfamariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87: 1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smits P, Kapma JA, Jacobs MC, Lutterman J, Thien T (1993) Endothelium-dependent vascular relaxation in patients with type I diabetes mellitus. Diabetes 42: 148–153

    Article  CAS  PubMed  Google Scholar 

  16. deTejada JS, Goldstein I, Adadzoi K, Krane RJ, Cohen RA (1993) Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N Eng J Med 320: 1025–1030

    Article  Google Scholar 

  17. McVeigh GE, Brennan GM, Johnson GD (1992) Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35: 771–776

    CAS  PubMed  Google Scholar 

  18. Christiansen JS, Gammelgaard J, Tronier B, Svendsen PA, Parving H-H (1982) Kidney function and size in diabetics, before and during initial insulin treatment. Kidney Int 21: 683–688

    Article  CAS  PubMed  Google Scholar 

  19. Paulsen EP, Pauly FL, Croft BY, Teates CD (1990) Simultaneous measurement of glomerular filtration rate and effective renal plasma flow reveals increased glomerular capillary pressure among teenage diabetic subjects. Contrib Nephrol 79: 52–57

    Article  CAS  PubMed  Google Scholar 

  20. Keen H, Chlouverakis C (1965) Metabolic factors in diabetic retinopathy. In: Graymore CN (ed) Biochemistry of the retina. Academic Press, London, pp 123–138

    Google Scholar 

  21. Williamson JR, Chang K, Frangos M et al. (1993) Hyperglycaemic pseudohypoxia and diabetic complications. Diabetes 42: 801–813

    Article  CAS  PubMed  Google Scholar 

  22. Sandeman DD, Shore AC, Tooke JE (1992) Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. New Engl J Med 327: 760–764

    Article  CAS  PubMed  Google Scholar 

  23. Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60: 102–107

    Article  CAS  PubMed  Google Scholar 

  24. Tozzi CA, Pojani GJ, Haranzogo AM, Boyd CD, Riley DJ (1989) Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest 84: 1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jackson CI, Schwartz SM (1992) Pharmacology of smooth muscle cell replication. Hypertension 20: 713–736

    Article  CAS  PubMed  Google Scholar 

  26. Itoh H, Pratt RE, Dzau VJ (1990) Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromocyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kilo C, Vogler N, Williamson JR (1972) Muscle capillary basement membrane changes related to aging and to diabetes mellitus. Diabetes 21: 881–905

    Article  CAS  PubMed  Google Scholar 

  29. Cagliero E, Roth T, Roy S, Lorenzi M (1991) Characteristics and mechanisms of high-glucose-induced overexpression of basement membrane components in cultured human endothelial cells. Diabetes 40: 102–110

    Article  CAS  PubMed  Google Scholar 

  30. Spiro MJ, He Q, D'Autilia ML (1995) Effect of high glucose on formation of extracellular matrix components by cultured rat heart endothelial cells. Diabetologia 38: 430–436

    Article  CAS  PubMed  Google Scholar 

  31. Rosenblit PD, Metzger RP, Wick AN (1974) Effect of streptozotocin diabetes on acid phosphatase and selected glycosydase activities of serum and various rat organs. Proc Soc Exp Biol Med 145: 244–248

    Article  CAS  PubMed  Google Scholar 

  32. Belfiore F, Rabuazzo AM, Iannello S, Campione R, Vasta D (1985) Cathepsin D and other hydrolases in the kidney of streptozotocin-diabetic mice. Possible relevance to microangiopathy. Horm Metabol Res 17: 435–437

    Article  CAS  Google Scholar 

  33. Wolinsky H, Goldfischer S, Capron L, Capron F, Coltoff-Schiller B, Lasak L (1978) Hydrolase activities in the rat aorta. I. Effects of diabetes and insulin treatment. Circ Res 42: 821–831

    Article  CAS  PubMed  Google Scholar 

  34. Juhan-Vague I, Alessi MC, Vague P (1991) Increased plasma plasminogen activator inhibitor 1 levels: a possible link between insulin resistance and atherothrombosis. Diabetologia 34: 457–462

    Article  CAS  PubMed  Google Scholar 

  35. Wasty F, Alawi MZ, Moore S (1994) Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 36: 316–322

    Article  Google Scholar 

  36. Tamsma TT, van den Born J, Bruijn JA et al. (1994) Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 37: 313–320

    Article  CAS  PubMed  Google Scholar 

  37. Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE, Striker LJ (1992) Receptor specific increase in extracellular matrix production in mouse mesangial cells by advanced glycation end products is mediated via platelet derived growth factor. Proc Natl Acad Sci USA 89: 2873–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycation end-products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318: 1315–1321

    Article  CAS  PubMed  Google Scholar 

  39. Esposito C, Gerlach H, Drett J, Stern D, Vlassara H (1992) Endothelial receptor-mediated binding of glucose modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 170: 1387–1407

    Article  Google Scholar 

  40. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87: 432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of retinal capillaries. Arch Ophthalmol 69: 492–502

    Article  CAS  PubMed  Google Scholar 

  42. Porta M, Molinatti PA, Dosso AA, Williams FMK, Brooks RA, Kohner EM (1994) Growth of bovine retinal pericytes and endothelial cells in high hexose concentrations. Diabète et Métabolisme 20: 25–30

    CAS  PubMed  Google Scholar 

  43. Li W, Shen S, Khatami M, Rockey JH (1984) Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high-glucose concentration. Diabetes 33: 785–789

    Article  CAS  PubMed  Google Scholar 

  44. Williams FMK, Dosso AA, Kohner EM, Porta M (1993) Pericyte growth-promoting activity is reduced in the blood of type 1 diabetic patients with and without retinopathy. Acta Diabetol 30: 123–127

    Article  CAS  Google Scholar 

  45. Kohner EM, Porta M, Hyer SL (1991) The pathogenesis of diabetic retinopathy and cataract. In: Pickup J, Williams G (eds) Textbook of diabetes. Blackwell, Oxford, pp 564–574

    Google Scholar 

  46. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA (1989) An activated form of transforming growth factor Β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci 86: 4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohner EM, Henkind P (1970) Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol 69: 403–414

    Article  CAS  PubMed  Google Scholar 

  48. Fox KA, Saffitz JE, Corr PB (1987) Pathophysiology of myocardial reperfusion. Cardiol Clin 5: 31–48

    CAS  PubMed  Google Scholar 

  49. Roy RS, McCord JM (1983) Superoxide and ischemia: conversion of xantine dehydrogenase to xantine oxidase. In: Greenvald R, Cohen G (eds) Oxy radicals and their scavenger systems. Elsevier Science Publishing, New York, pp. 145–153

    Google Scholar 

  50. Fasching P, Rohac M, Schneider B, Wagner O, Waldhausl W (1994) Elevation of circulating adhesion molecules in diabetes mellitus type I and II. A new mechanism for diabetic micro- and macroangiopathy. Diabetologia 37 [Suppl 1]:A25 (Abstract)

    Google Scholar 

  51. Olson JA, Whitelaw CM, McHardy KC, Pearson DWM, Forrester JV (1994) Endothelial adhesion molecules for leukocytes are elevated in diabetic retinopathy. Diabetologia 37[Suppl 1]:A36 (Abstract)

    Google Scholar 

  52. Ware JA, Heistad DD (1993) Platelet-endothelium interactions. N Engl J Med 328: 628–635

    Article  CAS  PubMed  Google Scholar 

  53. Ceriello A (1993) Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 36: 1119–1125

    Article  CAS  PubMed  Google Scholar 

  54. La Selva M, Beltramo E, Passera P, Porta M, Molinatti GM (1993) The role of endothelium in the pathogenesis of diabetic microangiopathy. Acta Diabetol 30: 190–200

    Article  PubMed  Google Scholar 

  55. The DAMAD Study Group (1989) Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicentre randomized controlled clinical trial. Diabetes 38: 491–498

    Article  Google Scholar 

  56. The TIMAD Study Group (1990) Ticlopidine treatment reduces the progression of non-proliferative diabetic retinopathy. Arch Ophthalmol 108: 1577–1583

    Article  Google Scholar 

  57. Early Treatment of Diabetic Retinopathy Study Group (1991) Effects of aspirin treatment of diabetic retinopathy. ETDRS Report No. 8. Ophthalmology 98: 757–765

    Article  Google Scholar 

  58. Ho PC (1979) Proliferative retinopathy in patients with defects of platelet function. Am J Ophthalmol 88: 37–39

    Article  CAS  Google Scholar 

  59. Valdorf-Hansen F, Hoyer I, Larsen HW (1964) Long-term anticoagulant therapy in diabetic retinopathy. Acta Ophthalmol 42: 579–587

    Article  CAS  Google Scholar 

  60. Heijboer H, Brandjes DPM, Büller HR, Sturk A, ten Cate JW (1990) Deficiencies of coagulation-inhibiting and fibrinolytic proteins in outpatients with deep-vein thrombosis. N Engl J Med 323: 1512–1516

    Article  CAS  PubMed  Google Scholar 

  61. Jones EW, Mitchell JRA (1983) Venous thrombosis in diabetes mellitus. Diabetologia 25: 502–505

    Article  CAS  PubMed  Google Scholar 

  62. Forrester JV (1987) Mechanisms of new vessel formation in the retina. Diab Med 4: 423–430

    Article  CAS  Google Scholar 

  63. Aiello LP, Avery RL, Arrigg PG et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331: 1480–1487

    Article  CAS  PubMed  Google Scholar 

  64. Sivalingham A, Kenney J, Brown CG, Benson WE, Donoso L (1990) Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 108: 869–872

    Article  Google Scholar 

  65. Grant R, Russel C, Fitzgerald C, Merimee TJ (1986) Insulin-like growth factors in vitreous: studies in control and diabetic subjects with neovascularization. Diabetes 35: 416–420

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porta, M. Endothelium: the main actor in the remodelling of the retinal microvasculature in diabetes. Diabetologia 39, 739–744 (1996). https://doi.org/10.1007/BF00418548

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418548

Keywords

Navigation