Skip to main content

Advertisement

Log in

IDO-expressing regulatory dendritic cells in cancer and chronic infection

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Immune evasion and T cell tolerance induction have been associated both with malignant disease and chronic infection. In recent years, increasing evidence has been accumulated that antigen-presenting cells such as dendritic cells (DC) play a major role in immune regulation. They are not only involved in the induction of immunity but also can inhibit immune responses. Interesting parallels for major molecular mechanisms involved in turning DC from stimulatory to regulatory cells have been uncovered between malignant disease and chronic infection. Apparently, not only inhibitory cytokines such as IL-10 seem to play a role, but also metabolic mechanisms dysregulating tryptophan metabolism, thereby, leading to inhibition of T cells and pathogens. We focus here on recent findings establishing the tryptophan catabolizing enzyme indoleamine-pyrrole 2,3 dioxygenase (IDO) as a central feature of DC with regulatory function both in cancer and chronic infection. Induction of enzymatically active IDO can be triggered by various soluble and membrane-bound factors, and in general, require interferon (IFN) signaling. In addition, based on the most recently established link between tumor necrosis factor alpha (TNFα), prostaglandin E2 and IDO, a new model of regulation of IDO in context of cancer and infection is proposed. In light of the increasing use of anti-TNFα drugs, these findings are also of great interest to the clinician scientist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cells

BDCA:

blood dendritic cell antigen

COX-2:

cyclooxygenase-2

CTLs:

cytotoxic T lymphocytes

DC:

dendritic cells

DCreg :

regulatory dendritic cells

EP2:

prostaglandin E2 receptor 2

FoxP3:

Forkhead box P3

GITR:

glucocorticoid-induced tumor necrosis factor receptor

HIV:

human immunodeficiency virus

HO-1:

heme oxygenase-1

ICSBP1:

interferon consensus sequence-binding protein 1

IDO:

indoleamine-pyrrole 2,3 dioxygenase (INDO)

IFN:

interferon

ILT:

immunologlobulin-like transcripts

INOS:

inducible nitric oxide synthase

IRF-1:

interferon regulatory factor 1

ISRE:

interferon-stimulated response elements

Mo-DC:

monocyte-derived DC

MS:

multiple sclerosis, pDC-plasmacytoid DC

PGE2 :

prostaglandin E2

RA:

rheumatoid arthritis

SOCS3:

suppressor of cytokine signaling 3

STAT:

signal transducer and activator of transcription

TDLN:

tumor-draining lymph nodes

TLR:

toll-like receptor

Tregs:

regulatory T cells

TYROBP:

tyro protein tyrosine kinase-binding protein

VEGF:

vascular endothelial growth factor.

References

  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    PubMed  CAS  Google Scholar 

  2. Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807–839

    PubMed  CAS  Google Scholar 

  3. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370

    PubMed  CAS  Google Scholar 

  4. Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LM (1995) Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc Natl Acad Sci USA 92:8200–8204

    PubMed  CAS  Google Scholar 

  5. Zheng P, Sarma S, Guo Y, Liu Y (1999) Two mechanisms for tumor evasion of preexisting cytotoxic T-cell responses: lessons from recurrent tumors. Cancer Res 59:3461–3467

    PubMed  CAS  Google Scholar 

  6. Bubenik J (2004) MHC class I down-regulation: tumour escape from immune surveillance? (review). Int J Oncol 25:487–491

    PubMed  CAS  Google Scholar 

  7. Agrawal S, Marquet J, Delfau-Larue MH, Copie-Bergman C, Jouault H, Reyes F, Bensussan A, Farcet JP (1998) CD3 hyporesponsiveness and in vitro apoptosis are features of T cells from both malignant and nonmalignant secondary lymphoid organs. J Clin Invest 102:1715–1723

    PubMed  CAS  Google Scholar 

  8. von Bernstorff W, Voss M, Freichel S, Schmid A, Vogel I, Johnk C, Henne-Bruns D, Kremer B, Kalthoff H (2001) Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 7:925s–932s

    Google Scholar 

  9. Koneru M, Schaer D, Monu N, Ayala A, Frey AB (2005) Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol 174:1830–1840

    PubMed  CAS  Google Scholar 

  10. Becker JC, Brabletz T, Kirchner T, Conrad CT, Brocker EB, Reisfeld RA (1995) Negative transcriptional regulation in anergic T cells. Proc Natl Acad Sci USA 92:2375–2378

    PubMed  CAS  Google Scholar 

  11. Wells AD, Walsh MC, Bluestone JA, Turka LA (2001) Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest 108:895–903

    PubMed  CAS  Google Scholar 

  12. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL (2002) Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 8:3137–3145

    PubMed  Google Scholar 

  13. Yu H, Jove R (2004) The STATs of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105

    PubMed  CAS  Google Scholar 

  14. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    PubMed  CAS  Google Scholar 

  15. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    PubMed  CAS  Google Scholar 

  16. Gilboa E (1999) How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 48:382–385

    PubMed  CAS  Google Scholar 

  17. Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461

    PubMed  CAS  Google Scholar 

  18. Chaux P, Favre N, Martin M, Martin F (1997) Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer 72:619–624

    PubMed  CAS  Google Scholar 

  19. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP (1996) Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170:111–119

    PubMed  CAS  Google Scholar 

  20. Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN (1998) Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res 4:585–593

    PubMed  CAS  Google Scholar 

  21. Fiore F, Von Bergwelt-Baildon MS, Drebber U, Beyer M, Popov A, Manzke O, Wickenhauser C, Baldus SE, Schultze JL (2006) Dendritic cells are significantly reduced in non-Hodgkin’s lymphoma and express less CCR7 and CD62L. Leuk Lymphoma 47:613–622

    PubMed  CAS  Google Scholar 

  22. Gabrilovich DI, Ciernik IF, Carbone DP (1996) Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170:101–110

    PubMed  CAS  Google Scholar 

  23. Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711

    PubMed  CAS  Google Scholar 

  24. Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435–1440

    PubMed  CAS  Google Scholar 

  25. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80:477–483

    PubMed  Google Scholar 

  26. Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    PubMed  CAS  Google Scholar 

  27. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222

    PubMed  CAS  Google Scholar 

  28. Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 105:1162–1169

    PubMed  CAS  Google Scholar 

  29. Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449

    PubMed  CAS  Google Scholar 

  30. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159:4772–4780

    PubMed  CAS  Google Scholar 

  31. Enk AH, Jonuleit H, Saloga J, Knop J (1997) Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 73:309–316

    PubMed  CAS  Google Scholar 

  32. Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ, Ramanathapuram LV, Arteaga CL, Akporiaye ET (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63:1860–1864

    PubMed  CAS  Google Scholar 

  33. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243

    PubMed  CAS  Google Scholar 

  34. Grohmann U, Fallarino F, Bianchi R, Belladonna ML, Vacca C, Orabona C, Uyttenhove C, Fioretti MC, Puccetti P (2001) IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol 167:708–714

    PubMed  CAS  Google Scholar 

  35. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    PubMed  CAS  Google Scholar 

  36. Hunt JS, Petroff MG, McIntire RH, Ober C (2005) HLA-G and immune tolerance in pregnancy. Faseb J 19:681–693

    PubMed  CAS  Google Scholar 

  37. Le Rond S, Gonzalez A, Gonzalez AS, Carosella ED, Rouas-Freiss N (2005) Indoleamine 2,3 dioxygenase and human leucocyte antigen-G inhibit the T-cell alloproliferative response through two independent pathways. Immunology 116:297–307

    PubMed  Google Scholar 

  38. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    PubMed  CAS  Google Scholar 

  39. Lopez AS, Alegre E, LeMaoult J, Carosella E, Gonzalez A (2006) Regulatory role of tryptophan degradation pathway in HLA-G expression by human monocyte-derived dendritic cells. Mol Immunol 43:2151–2160

    PubMed  CAS  Google Scholar 

  40. Hwang SL, Chung NP, Chan JK, Lin CL (2005) Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res 15:167–175

    PubMed  CAS  Google Scholar 

  41. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    PubMed  CAS  Google Scholar 

  42. Kronin V, Wu L, Gong S, Nussenzweig MC, Shortman K (2000) DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses. Int Immunol 12:731–735

    PubMed  CAS  Google Scholar 

  43. Mahnke K, Knop J, Enk AH (2003) Induction of tolerogenic DCs: ‘you are what you eat’. Trends Immunol 24:646–651

    PubMed  CAS  Google Scholar 

  44. Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol 159:565–573

    PubMed  CAS  Google Scholar 

  45. Ardavin C (2003) Origin, precursors and differentiation of mouse dendritic cells. Nat Rev Immunol 3:582–590

    PubMed  CAS  Google Scholar 

  46. Fallarino F, Vacca C, Orabona C, Belladonna ML, Bianchi R, Marshall B, Keskin DB, Mellor AL, Fioretti MC, Grohmann U, Puccetti P (2002) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14:65–68

    PubMed  CAS  Google Scholar 

  47. Wu L, Li CL, Shortman K (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184:903–911

    PubMed  CAS  Google Scholar 

  48. Traver D, Akashi K, Manz M, Merad M, Miyamoto T, Engleman EG, Weissman IL (2000) Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science 290:2152–2154

    PubMed  CAS  Google Scholar 

  49. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, Steinman RM, Nussenzweig MC (2007) Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–111

    PubMed  CAS  Google Scholar 

  50. Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P (2004) Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173:3748–3754

    PubMed  CAS  Google Scholar 

  51. Fallarino F, Orabona C, Vacca C, Bianchi R, Gizzi S, Asselin-Paturel C, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P (2005) Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int Immunol 17:1429–1438

    PubMed  CAS  Google Scholar 

  52. Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH (2005) Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol 175:5601–5605

    PubMed  CAS  Google Scholar 

  53. Jung ID, Lee CM, Jeong YI, Lee JS, Park WS, Han J, Park YM (2007) Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 581:1449–1456

    PubMed  CAS  Google Scholar 

  54. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  55. Baban B, Hansen AM, Chandler PR, Manlapat A, Bingaman A, Kahler DJ, Munn DH, Mellor AL (2005) A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17:909–919

    PubMed  CAS  Google Scholar 

  56. Manlapat AK, Kahler DJ, Chandler PR, Munn DH, Mellor AL (2007) Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol 37:1064–1071

    PubMed  CAS  Google Scholar 

  57. Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171:1652–1655

    PubMed  CAS  Google Scholar 

  58. Terness P, Chuang JJ, Bauer T, Jiga L, Opelz G (2005) Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105:2480–2486

    PubMed  CAS  Google Scholar 

  59. Lob S, Ebner S, Wagner S, Weinreich J, Schafer R, Konigsrainer A (2007) Are indoleamine-2,3-Dioxygenase producing human dendritic cells a tool for suppression of allogeneic T-cell responses? Transplantation 83:468–473

    PubMed  Google Scholar 

  60. Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381

    PubMed  CAS  Google Scholar 

  61. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL (2006) CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Google Scholar 

  62. von Bubnoff D, Bausinger H, Matz H, Koch S, Hacker G, Takikawa O, Bieber T, Hanau D, de la Salle H (2004) Human epidermal Langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. J Invest Dermatol 123:298–304

    Google Scholar 

  63. Boasso A, Herbeuval JP, Hardy AW, Anderson SA, Dolan MJ, Fuchs D, Shearer GM (2007) HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109:3351–3359

    PubMed  CAS  Google Scholar 

  64. Yoshida R, Hayaishi O (1978) Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 75:3998–4000

    PubMed  CAS  Google Scholar 

  65. Yoshida R, Urade Y, Tokuda M, Hayaishi O (1979) Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc Natl Acad Sci USA 76:4084–4086

    PubMed  CAS  Google Scholar 

  66. Byrne GI, Lehmann LK, Landry GJ (1986) Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun 53:347–351

    PubMed  CAS  Google Scholar 

  67. Ozaki Y, Edelstein MP, Duch DS (1988) Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc Natl Acad Sci USA 85:1242–1246

    PubMed  CAS  Google Scholar 

  68. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    PubMed  CAS  Google Scholar 

  69. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D, Munn DH (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2:64–68

    PubMed  CAS  Google Scholar 

  70. Dietz AB, Bulur PA, Knutson GJ, Matasic R, Vuk-Pavlovic S (2000) Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem Biophys Res Commun 275:731–738

    PubMed  CAS  Google Scholar 

  71. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    PubMed  CAS  Google Scholar 

  72. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    PubMed  CAS  Google Scholar 

  73. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH (2002) Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol 168:3771–3776

    PubMed  CAS  Google Scholar 

  74. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    PubMed  CAS  Google Scholar 

  75. Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P (2003) T cell apoptosis by kynurenines. Adv Exp Med Biol 527:183–190

    PubMed  CAS  Google Scholar 

  76. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468

    PubMed  CAS  Google Scholar 

  77. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    PubMed  CAS  Google Scholar 

  78. Chiesa MD, Carlomagno S, Frumento G, Balsamo M, Cantoni C, Conte R, Moretta L, Moretta A, Vitale M (2006) The tryptophan catabolite l-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108:4118–4125

    PubMed  Google Scholar 

  79. Kai S, Goto S, Tahara K, Sasaki A, Tone S, Kitano S (2004) Indoleamine 2,3-dioxygenase is necessary for cytolytic activity of natural killer cells. Scand J Immunol 59:177–182

    PubMed  CAS  Google Scholar 

  80. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    PubMed  CAS  Google Scholar 

  81. Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137

    PubMed  CAS  Google Scholar 

  82. Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S, Bonifazi P, Bistoni G, Rasi G, Velardi A, Fallarino F, Garaci E, Puccetti P (2006) Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108:2265–2274

    PubMed  CAS  Google Scholar 

  83. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    PubMed  CAS  Google Scholar 

  84. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Fioretti MC, Puccetti P (2006) Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transpl Immunol 17:58–60

    PubMed  CAS  Google Scholar 

  85. Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio S, Zelante T, Kurup WP, Pitzurra L, Puccetti P, Romani L (2006) Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 176:1712–1723

    PubMed  CAS  Google Scholar 

  86. Wobser M, Voigt H, Houben R, Eggert AO, Freiwald M, Kaemmerer U, Kaempgen E, Schrama D, Becker JC (2007) Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother 56:1017–1024

    PubMed  CAS  Google Scholar 

  87. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, Horenstein AL, Fiore F, Massaia M, Colombo MP, Baccarani M, Lemoli RM (2007) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T regulatory cells. Blood 109:2871–2877

    PubMed  CAS  Google Scholar 

  88. Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586

    PubMed  CAS  Google Scholar 

  89. Sayama S, Yoshida R, Oku T, Imanishi J, Kishida T, Hayaishi O (1981) Inhibition of interferon-mediated induction of indoleamine 2,3-dioxygenase in mouse lung by inhibitors of prostaglandin biosynthesis. Proc Natl Acad Sci USA 78:7327–7330

    PubMed  CAS  Google Scholar 

  90. Yasui H, Takai K, Yoshida R, Hayaishi O (1986) Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc Natl Acad Sci USA 83:6622–6626

    PubMed  CAS  Google Scholar 

  91. Konan KV, Taylor MW (1996) Importance of the two interferon-stimulated response element (ISRE) sequences in the regulation of the human indoleamine 2,3-dioxygenase gene. J Biol Chem 271:19140–19145

    PubMed  CAS  Google Scholar 

  92. Dai W, Gupta SL (1990) Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J Biol Chem 265:19871–19877

    PubMed  CAS  Google Scholar 

  93. Mellor AL, Chandler P, Baban B, Hansen AM, Marshall B, Pihkala J, Waldmann H, Cobbold S, Adams E, Munn DH (2004) Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16:1391–1401

    PubMed  CAS  Google Scholar 

  94. Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    PubMed  CAS  Google Scholar 

  95. Boasso A, Herbeuval JP, Hardy AW, Winkler C, Shearer GM (2005) Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 105:1574–1581

    PubMed  CAS  Google Scholar 

  96. Miwa N, Hayakawa S, Miyazaki S, Myojo S, Sasaki Y, Sakai M, Takikawa O, Saito S (2005) IDO expression on decidual and peripheral blood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod 11:865–870

    PubMed  CAS  Google Scholar 

  97. Tan PH, Yates JB, Xue SA, Chan C, Jordan WJ, Harper JE, Watson MP, Dong R, Ritter MA, Lechler RI, Lombardi G, George AJ (2005) Creation of tolerogenic human dendritic cells via intracellular CTLA4: a novel strategy with potential in clinical immunosuppression. Blood 106:2936–2943

    PubMed  CAS  Google Scholar 

  98. Shevach EM, Stephens GL (2006) The GITR–GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 6:613–618

    PubMed  CAS  Google Scholar 

  99. Orabona C, Belladonna ML, Vacca C, Bianchi R, Fallarino F, Volpi C, Gizzi S, Fioretti MC, Grohmann U, Puccetti P (2005) Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J Immunol 174:6582–6586

    PubMed  CAS  Google Scholar 

  100. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R, Murray PJ (2003) SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4:546–550

    PubMed  CAS  Google Scholar 

  101. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Forster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW, Alexander WS (2003) SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4:540–545

    PubMed  CAS  Google Scholar 

  102. Orabona C, Tomasello E, Fallarino F, Bianchi R, Volpi C, Bellocchio S, Romani L, Fioretti MC, Vivier E, Puccetti P, Grohmann U (2005) Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. Eur J Immunol 35:3111–3118

    PubMed  CAS  Google Scholar 

  103. Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107:2846–2854

    PubMed  CAS  Google Scholar 

  104. Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, von Bubnoff D, Steitz J, Striegler J, Moldenhauer G, Tuting T, Heit A, Huster KM, Takikawa O, Akira S, Busch DH, Wagner H, Hammerling GJ, Knolle PA, Limmer A (2006) Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 36:12–20

    PubMed  CAS  Google Scholar 

  105. Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, Wada H, Noma A, Seishima M (2001) Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-gamma-independent mechanism. Eur J Immunol 31:2313–2318

    PubMed  CAS  Google Scholar 

  106. Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H, Seishima M (2006) The signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J Biochem (Tokyo) 139:655–662

    CAS  Google Scholar 

  107. Pettersson A, Ciumas C, Chirsky V, Link H, Huang YM, Xiao BG (2004) Dendritic cells exposed to estrogen in vitro exhibit therapeutic effects in ongoing experimental allergic encephalomyelitis. J Neuroimmunol 156:58–65

    PubMed  CAS  Google Scholar 

  108. Xiao BG, Liu X, Link H (2004) Antigen-specific T cell functions are suppressed over the estrogen–dendritic cell–indoleamine 2,3-dioxygenase axis. Steroids 69:653–659

    PubMed  CAS  Google Scholar 

  109. Zhu WH, Lu CZ, Huang YM, Link H, Xiao BG (2007) A putative mechanism on remission of multiple sclerosis during pregnancy: estrogen-induced indoleamine 2,3-dioxygenase by dendritic cells. Mult Scler 13:33–40

    PubMed  CAS  Google Scholar 

  110. Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med (in press)

  111. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165:618–622

    PubMed  CAS  Google Scholar 

  112. Popov A, Abdullah Z, Wickenhauser C, Saric T, Driesen J, Hanisch FG, Domann E, Raven EL, Dehus O, Hermann C, Eggle D, Debey S, Chakraborty T, Kronke M, Utermohlen O, Schultze JL (2006) Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest 116:3160–3170

    PubMed  CAS  Google Scholar 

  113. Thomas SR, Salahifar H, Mashima R, Hunt NH, Richardson DR, Stocker R (2001) Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate. J Immunol 166:6332–6340

    PubMed  CAS  Google Scholar 

  114. Hill M, Pereira V, Chauveau C, Zagani R, Remy S, Tesson L, Mazal D, Ubillos L, Brion R, Asghar K, Mashreghi MF, Kotsch K, Moffett J, Doebis C, Seifert M, Boczkowski J, Osinaga E, Anegon I (2005) Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. Faseb J 19:1957–1968

    PubMed  CAS  Google Scholar 

  115. Hucke C, MacKenzie CR, Adjogble KD, Takikawa O, Daubener W (2004) Nitric oxide-mediated regulation of gamma interferon-induced bacteriostasis: inhibition and degradation of human indoleamine 2,3-dioxygenase. Infect Immun 72:2723–2730

    PubMed  CAS  Google Scholar 

  116. Terness P, Chuang JJ, Opelz G (2006) The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol 27:68–73

    PubMed  CAS  Google Scholar 

  117. Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H, Takikawa O, Munn DH, Gendelman HE, Persidsky Y (2005) Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106:2382–2390

    PubMed  CAS  Google Scholar 

  118. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergast GC, Munn DH (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801

    PubMed  CAS  Google Scholar 

  119. van der Sluijs KF, Nijhuis M, Levels JH, Florquin S, Mellor AL, Jansen HM, van der Poll T, Lutter R (2006) Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 193:214–222

    PubMed  Google Scholar 

  120. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312–319

    PubMed  CAS  Google Scholar 

  121. Muller AJ, Malachowski WP, Prendergast GC (2005) Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors. Expert Opin Ther Targets 9:831–849

    PubMed  CAS  Google Scholar 

  122. Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536

    PubMed  CAS  Google Scholar 

  123. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916

    PubMed  CAS  Google Scholar 

  124. Benoit V, Relic B, de Leval X, Chariot A, Merville MP, Bours V (2004) Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene 23:1631–1635

    PubMed  CAS  Google Scholar 

  125. Pockaj BA, Basu GD, Pathangey LB, Gray RJ, Hernandez JL, Gendler SJ, Mukherjee P (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11:328–339

    PubMed  Google Scholar 

  126. Chemnitz JM, Driesen J, Classen S, Riley JL, Debey S, Beyer M, Popov A, Zander T, Schultze JL (2006) Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin’s lymphoma. Cancer Res 66:1114–1122

    PubMed  CAS  Google Scholar 

  127. Kalinski P, Hilkens C, Snijders A, Snijdewint F, Kapsenberg M (1997) IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159:28–35

    PubMed  CAS  Google Scholar 

  128. Harizi H, Juzan M, Pitard V, Moreau J-F, Gualde N (2002) Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol 168:2255–2263

    PubMed  CAS  Google Scholar 

  129. Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K, Luo J, Zhu L, Lin Y, Huang M, Dohadwala M, Batra RK, Dubinett SM (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  130. Son Y, Ito T, Ozaki Y, Tanijiri T, Yokoi T, Nakamura K, Takebayashi M, Amakawa R, Fukuhara S (2006) Prostaglandin E is a negative regulator on human plasmacytoid dendritic cells. Immunology 119:36–42

    PubMed  CAS  Google Scholar 

  131. Bartz H, Buning-Pfaue F, Turkel O, Schauer U (2002) Respiratory syncytial virus induces prostaglandin E2, IL-10 and IL-11 generation in antigen presenting cells. Clin Exp Immunol 129:438–445

    PubMed  CAS  Google Scholar 

  132. Hessle CC, Andersson B, Wold AE (2003) Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes. Inflammation 27:329–332

    PubMed  CAS  Google Scholar 

  133. Bowman CC, Bost KL (2004) Cyclooxygenase-2-mediated prostaglandin E(2) production in mesenteric lymph nodes and in cultured macrophages and dendritic cells after infection with Salmonella. J Immunol 172:2469–2475

    PubMed  CAS  Google Scholar 

  134. Zhu H, Cong JP, Yu D, Bresnahan WA, Shenk TE (2002) Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci USA 99:3932–3937

    PubMed  CAS  Google Scholar 

  135. Neild AL, Shin S, Roy CR (2005) Activated macrophages infected with Legionella inhibit T cells by means of MyD88-dependent production of prostaglandins. J Immunol 175:8181–8190

    PubMed  CAS  Google Scholar 

  136. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, Kasprowicz DJ, Kellar K, Pare J, van Dyke T, Ziegler S, Unutmaz D, Pulendran B (2006) Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 116:916–928

    PubMed  CAS  Google Scholar 

  137. Ardavin C, Shortman K (1992) Cell surface marker analysis of mouse thymic dendritic cells. Eur J Immunol 22:859–862

    PubMed  CAS  Google Scholar 

  138. Zhou LJ, Tedder TF (1995) A distinct pattern of cytokine gene expression by human CD83+ blood dendritic cells. Blood 86:3295–3301

    PubMed  CAS  Google Scholar 

  139. Kronin V, Vremec D, Shortman K (1998) Does the IL-2 receptor alpha chain induced on dendritic cells have a biological function? Int Immunol 10:237–240

    PubMed  CAS  Google Scholar 

  140. Janik JE, Morris JC, Pittaluga S, McDonald K, Raffeld M, Jaffe ES, Grant N, Gutierrez M, Waldmann TA, Wilson WH (2004) Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma. Blood 104:3355–3357

    PubMed  CAS  Google Scholar 

  141. Fabre-Guillevin E, Tabrizi R, Coulon V, Monnereau A, Eghbali H, Soubeyran I, Soubeyran P (2006) Aggressive non-Hodgkin’s lymphoma: concomitant evaluation of interleukin-2, soluble interleukin-2 receptor, interleukin-4, interleukin-6, interleukin-10 and correlation with outcome. Leuk Lymphoma 47:603–611

    PubMed  CAS  Google Scholar 

  142. Kaminska J, Kowalska M, Kotowicz B, Fuksiewicz M, Glogowski M, Wojcik E, Chechlinska M, Steffen J (2006) Pretreatment Serum Levels of Cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis. M-CSF—an independent prognostic factor. Oncology 70:115–125

    PubMed  CAS  Google Scholar 

  143. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    PubMed  CAS  Google Scholar 

  144. Toossi Z, Sedor JR, Lapurga JP, Ondash RJ, Ellner JJ (1990) Expression of functional interleukin 2 receptors by peripheral blood monocytes from patients with active pulmonary tuberculosis. J Clin Invest 85:1777–1784

    Article  PubMed  CAS  Google Scholar 

  145. Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, Mazzella F, Antonia SJ, Mellor AL, Munn DH (2003) Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 83:1457–1466

    PubMed  CAS  Google Scholar 

  146. Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, Durelli I, Horenstein AL, Fiore F, Massaia M, Piccioli M, Pileri SA, Zavatto E, D’Addio A, Baccarani M, Lemoli RM (2007) Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 21:353–355

    PubMed  CAS  Google Scholar 

  147. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Konigsrainer A, Fuchs D, Amberger A (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12:1144–1151

    PubMed  CAS  Google Scholar 

  148. Astigiano S, Morandi B, Costa R, Mastracci L, D’Agostino A, Ratto GB, Melioli G, Frumento G (2005) Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer. Neoplasia 7:390–396

    PubMed  CAS  Google Scholar 

  149. Nakamura T, Shima T, Saeki A, Hidaka T, Nakashima A, Takikawa O, Saito S (2007) Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci 98:874–881

    PubMed  CAS  Google Scholar 

  150. Flynn JL, Chan J (2005) What’s good for the host is good for the bug. Trends Microbiol 13:98–102

    PubMed  CAS  Google Scholar 

  151. Carlin JM, Weller JB (1995) Potentiation of interferon-mediated inhibition of Chlamydia infection by interleukin-1 in human macrophage cultures. Infect Immun 63:1870–1875

    PubMed  CAS  Google Scholar 

  152. Daubener W, Spors B, Hucke C, Adam R, Stins M, Kim KS, Schroten H (2001) Restriction of Toxoplasma gondii growth in human brain microvascular endothelial cells by activation of indoleamine 2,3-dioxygenase. Infect Immun 69:6527–6531

    PubMed  CAS  Google Scholar 

  153. Roshick C, Wood H, Caldwell HD, McClarty G (2006) Comparison of gamma interferon-mediated antichlamydial defense mechanisms in human and mouse cells. Infect Immun 74:225–238

    PubMed  CAS  Google Scholar 

  154. Gray ML, Killinger AH (1966) Listeria monocytogenes and listeric infections. Bacteriol Rev 30:309–382

    PubMed  CAS  Google Scholar 

  155. Southwick FS, Purich DL (1996) Intracellular pathogenesis of listeriosis. N Engl J Med 334:770–776

    PubMed  CAS  Google Scholar 

  156. Mielke ME, Peters C, Hahn H (1997) Cytokines in the induction and expression of T-cell-mediated granuloma formation and protection in the murine model of listeriosis. Immunol Rev 158:79–93

    PubMed  CAS  Google Scholar 

  157. Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev Immunol 4:812–823

    PubMed  CAS  Google Scholar 

  158. Petit JC, Richard G, Burghoffer B, Daguet GL (1985) Suppression of cellular immunity to Listeria monocytogenes by activated macrophages: mediation by prostaglandins. Infect Immun 49:383–388

    PubMed  CAS  Google Scholar 

  159. Mackler AM, Barber EM, Takikawa O, Pollard JW (2003) Indoleamine 2,3-dioxygenase is regulated by IFN-gamma in the mouse placenta during Listeria monocytogenes infection. J Immunol 170:823–830

    PubMed  CAS  Google Scholar 

  160. Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    PubMed  CAS  Google Scholar 

  161. Kaufmann SH (1993) Immunity to intracellular bacteria. Annu Rev Immunol 11:129–163

    PubMed  CAS  Google Scholar 

  162. Saunders BM, Cooper AM (2000) Restraining mycobacteria: role of granulomas in mycobacterial infections. Immunol Cell Biol 78:334–341

    PubMed  CAS  Google Scholar 

  163. Kaufmann SH (2002) Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 61(Suppl 2):ii54–ii58

    PubMed  CAS  Google Scholar 

  164. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142

    PubMed  CAS  Google Scholar 

  165. Luft T, Jefford M, Luetjens P, Toy T, Hochrein H, Masterman KA, Maliszewski C, Shortman K, Cebon J, Maraskovsky E (2002) Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 100:1362–1372

    PubMed  CAS  Google Scholar 

  166. Scandella E, Men Y, Legler DF, Gillessen S, Prikler L, Ludewig B, Groettrup M (2004) CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 103:1595–1601

    PubMed  CAS  Google Scholar 

  167. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678

    PubMed  CAS  Google Scholar 

  168. Basu GD, Tinder TL, Bradley JM, Tu T, Hattrup CL, Pockaj BA, Mukherjee P (2006) Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol 177:2391–2402

    PubMed  CAS  Google Scholar 

  169. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J (2006) Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232

    PubMed  CAS  Google Scholar 

  170. Mizoguchi A, Ogawa A, Takedatsu H, Sugimoto K, Shimomura Y, Shirane K, Nagahama K, Nagaishi T, Mizoguchi E, Blumberg RS, Bhan AK (2007) Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J Clin Invest 117:605–615

    PubMed  CAS  Google Scholar 

  171. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1:20–30

    PubMed  CAS  Google Scholar 

  172. Mielke ME, Rosen H, Brocke S, Peters C, Hahn H (1992) Protective immunity and granuloma formation are mediated by two distinct tumor necrosis factor alpha- and gamma interferon-dependent T cell-phagocyte interactions in murine listeriosis: dissociation on the basis of phagocyte adhesion mechanisms. Infect Immun 60:1875–1882

    PubMed  CAS  Google Scholar 

  173. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P (1989) The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–740

    PubMed  CAS  Google Scholar 

  174. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572

    PubMed  CAS  Google Scholar 

  175. Ehlers S (2003) Role of tumour necrosis factor (TNF) in host defence against tuberculosis: implications for immunotherapies targeting TNF. Ann Rheum Dis 62(Suppl 2):ii37–ii42

    PubMed  CAS  Google Scholar 

  176. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104

    PubMed  CAS  Google Scholar 

  177. Slifman NR, Gershon SK, Lee JH, Edwards ET, Braun MM (2003) Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents. Arthritis Rheum 48:319–324

    PubMed  CAS  Google Scholar 

  178. Wallis RS, Broder M, Wong J, Lee A, Hoq L (2005) Reactivation of latent granulomatous infections by infliximab. Clin Infect Dis 41(Suppl 3):S194–S198

    PubMed  CAS  Google Scholar 

  179. Furst DE, Wallis R, Broder M, Beenhouwer DO (2006) Tumor necrosis factor antagonists: different kinetics and/or mechanisms of action may explain differences in the risk for developing granulomatous infection. Semin Arthritis Rheum 36:159–167

    PubMed  CAS  Google Scholar 

  180. Wallis RS, Ehlers S (2005) Tumor necrosis factor and granuloma biology: explaining the differential infection risk of etanercept and infliximab. Semin Arthritis Rheum 34:34–38

    PubMed  CAS  Google Scholar 

  181. Ehlers S (2005) Tumor necrosis factor and its blockade in granulomatous infections: differential modes of action of infliximab and etanercept? Clin Infect Dis 41(Suppl 3):S199–S203

    PubMed  CAS  Google Scholar 

  182. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. Embo J 18:3956–3963

    PubMed  CAS  Google Scholar 

  183. Wollert T, Pasche B, Rochon M, Deppenmeier S, van den Heuvel J, Gruber AD, Heinz DW, Lengeling A, Schubert WD (2007) Extending the host range of Listeria monocytogenes by rational protein design. Cell 129:891–902

    PubMed  CAS  Google Scholar 

  184. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  185. Grohmann U, Bianchi R, Belladonna ML, Silla S, Fallarino F, Fioretti MC, Puccetti P (2000) IFN-gamma inhibits presentation of a tumor/self peptide by CD8 alpha-dendritic cells via potentiation of the CD8 alpha+ subset. J Immunol 165:1357–1363

    PubMed  CAS  Google Scholar 

  186. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    PubMed  CAS  Google Scholar 

  187. MacKenzie CR, Heseler K, Muller A, Daubener W (2007) Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab 8:237–244

    PubMed  CAS  Google Scholar 

  188. Lara-Tejero M, Pamer EG (2004) T cell responses to Listeria monocytogenes. Curr Opin Microbiol 7:45–50

    PubMed  CAS  Google Scholar 

  189. Penberthy WT (2007) Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Curr Drug Metab 8:245–266

    PubMed  CAS  Google Scholar 

  190. Zganiacz A, Santosuosso M, Wang J, Yang T, Chen L, Anzulovic M, Alexander S, Gicquel B, Wan Y, Bramson J, Inman M, Xing Z (2004) TNF-alpha is a critical negative regulator of type 1 immune activation during intracellular bacterial infection. J Clin Invest 113:401–413

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation, a Köln Fortune Grant and a grant of the Bundesministerium fuer Bildung and Forschung (NGFN N1K3-S24T27) to JLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim L. Schultze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A., Schultze, J.L. IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med 86, 145–160 (2008). https://doi.org/10.1007/s00109-007-0262-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0262-6

Keywords

Navigation