Skip to main content
Log in

Clinical Implementation of Volumetric Intensity-Modulated Arc Therapy (VMAT) with ERGO++

Klinische Einführung von volumetrisch intensitätsmodulierter Arc-Therapy (VMAT) mit ERGO++

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and Purpose:

Volumetric modulated arc therapy (VMAT) has the potential to deliver dose distributions comparable to the established intensity-modulated radiotherapy techniques for a multitude of target paradigms. Prior to implementing VMAT into their clinical routine in December 2008, the authors evaluated the dose calculation/delivery accuracy of 24 sample VMAT plans (prostate and anal cancer target paradigms) with film and ionization dosimetry. After the start of the clinical program, in vivo measurements with a rectal probe were performed.

Material and Methods:

The VMAT plans were generated by the treatment-planning system (TPS) ERGO++ (Elekta, Crawley, UK) and transferred to a phantom. Film dosimetry was performed with Kodak EDR2 films, and evaluated with dose profiles and γ-index analysis. Appropriate ionization chambers were used for absolute dose measurements in the phantom and for in vivo measurements. The ionization chamber was used with localization of the measurement volume based on positioning cone-beam computed tomography.

Results:

Plans were transferred from ERGO++ to the record and verify (R&V) system/linear accelerator (linac). The absolute dose deviations recorded with the ionization chamber were 1.74% ± 1.62% across both indications. The γ-index analysis of the film dosimetry showed no deviation > 3%/3 mm in the high-dose region. On in vivo measurements, a deviation between calculation and measurement of 2.09% ± 2.4% was recorded, when the chamber was successfully positioned in the high-dose region.

Conclusion:

VMAT plans can be planned and treated reproducibly in high quality after the commissioning of the complete delivery chain consisting of TPS, R&V system and linac. The results of the individual plan verification meet the commonly accepted requirements. The first in vivo measurements confirm the reproducible precision of the delivered dose during clinical treatments.

Zusammenfassung

Hintergrund und Ziel:

Die volumetrisch modulierte Arc-Therapie (VMAT) bietet die Möglichkeit, für einige Planparadigmata zur bisher etablierten intensitätsmodulierten Strahlentherapie vergleichbare Dosisverteilungen zu generieren. Vor der im Dezember 2008 erfolgten Einführung von VMAT in die eigene klinische Routine überprüften die Autoren Dosisberechnung und Bestrahlungsgenauigkeit anhand von 24 VMAT-Plänen (Anal- und Prostatakarzinomplanungsparadigmata) mittels Film- und Ionisationsdosimetrie. Erste Patientenbestrahlungen wurden mittels rektaler In-vivo-Dosimetrie verifiziert.

Material und Methodik:

Die VMAT-Pläne wurden mit dem Planungssystem ERGO++ (Elekta, Crawley, UK) generiert und in einem Phantom verifiziert. Filmdosimetrie wurde mittels Kodak-EDR2-Film, Dosisprofilen und der γ-Analyse realisiert. Geeignete Ionisationskammern wurden für absolute Dosismessungen im Phantom und für die In-vivo-Dosimetrie verwendet. Ein Cone-Beam-Computertomogramm wurde für die Lokalisation des Messvolumens der Ionisationskammer im Rektum verwendet.

Ergebnisse:

Die Pläne wurden durchgängig fehlerfrei von ERGO++ an das „record and verify“-(R&V-)System und an den Beschleuniger übertragen. Die mittlere Abweichung der Absolutdosimetrie betrug 1,74% ± 1,62%. Die γ-Index-Analyse der Filmdosimetrie zeigte keine Abweichung > 3%/3 mm im Hochdosisbereich. Die In-vivo-Messungen ergaben nach erfolgreicher Positionierung im Hochdosisbereich eine mittlere Abweichung zwischen berechneter und applizierter Dosis von 2,09% ± 2,4%.

Schlussfolgerung:

VMAT-Pläne können auf Basis der klinisch zugelassenen Kette aus Planungs-, R&V- und Bestrahlungssystem nach adäquater Kommissionierung reproduzierbar erzeugt und zuverlässig bestrahlt werden. Die Ergebnisse der Individualplanverifikation erfüllen die allgemein akzeptierten Bedingungen. Erste in vivo ermittelte Dosen bestätigen die Präzision der Dosisapplikation im klinischen Einsatz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford JL, Nordmark Hansen V, McNair HA, et al. Treatment of lung cancer using volumetric modulated arc therapy and image guidance: a case study. Acta Oncol 2008;47:1438–1443.

    Article  CAS  PubMed  Google Scholar 

  2. Bogner L, Scherer J, Treutwein M, et al. Verification of IMRT: techniques and problems. Strahlenther Onkol 2004;180:340–350.

    Article  PubMed  Google Scholar 

  3. Bratengeier K. 2-step IMAT and 2-step IMRT in three dimensions. Med Phys 2005;32:3849–3861.

    Article  PubMed  Google Scholar 

  4. Bucciolini M, Buonamici FB, Casati M. Verification of IMRT fields by film dosimetry. Med Phys 2004;31:161–168.

    Article  PubMed  Google Scholar 

  5. Cao D, Holmes TW, Afghan MK, et al. Comparison of plan quality provided by intensity-modulated arc therapy and helical tomotherapy. Int J Radiat Oncol Biol Phys 2007;69:240–250.

    PubMed  Google Scholar 

  6. Childress NL, Rosen II. Effect of processing time delay on the dose response of Kodak EDR2 film. Med Phys 2004;31:2284–2288.

    Article  PubMed  Google Scholar 

  7. De Meerleer G, Vakaet L, Meersschout S, et al. Intensity-modulated radiotherapy as primary treatment for prostate cancer: acute toxicity in 114 patients. Int J Radiat Oncol Biol Phys 2004;60:777–787.

    PubMed  Google Scholar 

  8. De Meerleer GO, Vakaet LA, De Gersem WR, et al. Radiotherapy of prostate cancer with or without intensity modulated beams: a planning comparison. Int J Radiat Oncol Biol Phys 2000;47:639–648.

    Article  PubMed  Google Scholar 

  9. Depuydt T, Van Esch A, Huyskens DP. A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol 2002;62:309–319.

    Article  PubMed  Google Scholar 

  10. Dobler B, Lorenz F, Wertz H, et al. Intensity-modulated radiation therapy (IMRT) with different combinations of treatment-planning systems and linacs: issues and how to detect them. Strahlenther Onkol 2006;182:481–488.

    Article  PubMed  Google Scholar 

  11. Duthoy W, De Gersem W, Vergote K, et al. Whole abdominopelvic radiotherapy (WAPRT) using intensity-modulated arc therapy (IMAT): first clinical experience. Int J Radiat Oncol Biol Phys 2003;57:1019–1032.

    PubMed  Google Scholar 

  12. Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004;60:794–806.

    PubMed  Google Scholar 

  13. Essers M, Mijnheer BJ. In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 1999;43:245–259.

    CAS  PubMed  Google Scholar 

  14. Ezzell GA, Galvin JM, Low D, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 2003;30:2089–2115.

    Article  PubMed  Google Scholar 

  15. Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53. Quality assurance for clinical radiotherapy treatment planning. Med Phys 1998;25:1773–1829.

    Article  CAS  PubMed  Google Scholar 

  16. Guckenberger M, Flentje M. Intensity-modulated radiotherapy (IMRT) of localized prostate cancer. A review and future perspectives. Strahlenther Onkol 2007;183:57–62.

    Article  PubMed  Google Scholar 

  17. Hayne D, Johnson U, D’souza D, et al. Anorectal irradiation in pelvic radiotherapy: an assessment using in-vivo dosimetry. Clin Oncol (R Coll Radiol) 2001;13:126–129.

    CAS  Google Scholar 

  18. Jacob V, Kneschaurek P. A method for improved verification of entire IMRT plans by film dosimetry. Strahlenther Onkol 2009;185:34–40.

    Article  PubMed  Google Scholar 

  19. Kalz J, Sterzing F, Schubert K, et al. Dosimetric comparison of image guidance by megavoltage computed tomography versus bone alignment for prostate cancer radiotherapy. Strahlenther Onkol 2009;185:241–247.

    Article  PubMed  Google Scholar 

  20. Kupelian PA, Ciezki J, Reddy CA, et al. Effect of increasing radiation doses on local and distant failures in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;71:16–22.

    PubMed  Google Scholar 

  21. Meijer GJ, Minken AW, van Ingen KM, et al. Accurate in vivo dosimetry of a randomized trial of prostate cancer irradiation. Int J Radiat Oncol Biol Phys 2001;49:1409–1418.

    CAS  PubMed  Google Scholar 

  22. Nairz O, Merz F, Deutschmann H, et al. A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients. Strahlenther Onkol 2008;184:663–667.

    Article  PubMed  Google Scholar 

  23. Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 2008;35:310–317.

    Article  PubMed  Google Scholar 

  24. Palm A, LoSasso T. Influence of phantom material and phantom size on radiographic film response in therapy photon beams. Med Phys 2005;32:2434–2442.

    Article  PubMed  Google Scholar 

  25. Peeters ST, Heemsbergen WD, van Putten WL, et al. Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int J Radiat Oncol Biol Phys 2005;61:1019–1034.

    PubMed  Google Scholar 

  26. Pollack A, Zagars GK, Smith LG, et al. Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol 2000;18:3904–3911.

    CAS  PubMed  Google Scholar 

  27. Rhein B, Haring P, Debus J, et al. [Dosimetric verification of IMRT treatment plans at the German Cancer Research Center (DKFZ).] Z Med Phys 2002;12:122–132.

    PubMed  Google Scholar 

  28. Saarilahti K, Arponen P, Vaalavirta L, et al. The effect of intensity-modulated radiotherapy and high dose rate brachytherapy on acute and late radiotherapy-related adverse events following chemoradiotherapy of anal cancer. Radiother Oncol 2008;87:383–390.

    Article  PubMed  Google Scholar 

  29. Salama JK, Mell LK, Schomas DA, et al. Concurrent chemotherapy and intensity-modulated radiation therapy for anal canal cancer patients: a multicenter experience. J Clin Oncol 2007;25:4581–4586.

    Article  CAS  PubMed  Google Scholar 

  30. Schneider F, Polednik M, Wolff D, et al. Optimization of the gafchromic EBT protocol for IMRT QA. Z Med Phys 2009;19:29–37.

    PubMed  Google Scholar 

  31. South CP, Khoo VS, Naismith O, et al. A comparison of treatment planning techniques used in two randomised UK external beam radiotherapy trials for localised prostate cancer. Clin Oncol (R Coll Radiol) 2008;20:15–21.

    CAS  Google Scholar 

  32. Steil V, Schneider F, Kupper B, et al. [Patient-centered image and data management in radiation oncology.] Strahlenther Onkol 2009;185:1–7.

    Article  PubMed  Google Scholar 

  33. Stieler F, Wolff D, Lohr F, et al. Conformal anal cancer pelvis radiotherapy treatment with VMAT. Int J Radiat Oncol Biol Phys 2008;72:S542–S543.

    Google Scholar 

  34. Stieler F, Wolff D, Lohr F, et al. A fast radiotherapy paradigm for anal cancer with volumetric modulated arc therapy (VMAT). Radiat Oncol 2009;4:48.

    Article  PubMed  Google Scholar 

  35. Stock M, Kroupa B, Georg D. Interpretation and evaluation of the gamma index and the gamma index angle for the verification of IMRT hybrid plans. Phys Med Biol 2005;50:399–411.

    Article  PubMed  Google Scholar 

  36. van Elmpt W, McDermott L, Nijsten S, et al. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiother Oncol 2008;88:289–309.

    Article  PubMed  Google Scholar 

  37. van Elmpt W, Nijsten S, Petit S, et al. 3D in vivo dosimetry using megavoltage cone-beam CT and EPID dosimetry. Int J Radiat Oncol Biol Phys 2009;73:1580–1587.

    PubMed  Google Scholar 

  38. Verbakel WF, Cuijpers JP, Hoffmans D, et al. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys 2009;74:252–259.

    PubMed  Google Scholar 

  39. Wertz H, Boda-Heggemann J, Walter C, et al. Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer. Int J Radiat Oncol Biol Phys 2007;67:288–295.

    PubMed  Google Scholar 

  40. Wiezorek T, Banz N, Schwedas M, et al. Dosimetric quality assurance for intensity-modulated radiotherapy. Feasibility study for a filmless approach. Strahlenther Onkol 2005;181:468–474.

    Article  PubMed  Google Scholar 

  41. Wilcox E, Daskalov G, Nedialkova L. Comparison of the epson expression 1680 flatbed and the vidar VXR-16 dosimetry PRO film scanners for use in IMRT dosimetry using gafchromic and radiographic film. Med Phys 2007;34:41–48.

    Article  PubMed  Google Scholar 

  42. Wolff D, Stieler F, Abo-Madyan Y, et al. Volumetric intensity modulated arc therapy (VMAT) vs. serial tomotherapy and segmental (step and shoot) IMRT for treatment of prostate cancer. Int J Radiat Oncol Biol Phys 2008;72:S562.

    Google Scholar 

  43. Wolff D, Stieler F, Welzel G, et al. Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 2009;93:226–233.

    Article  PubMed  Google Scholar 

  44. Yeo IJ, Beiki-Ardakani A, Cho YB, et al. EDR2 film dosimetry for IMRT verification using low-energy photon filters. Med Phys 2004;31:1960–1963.

    Article  PubMed  Google Scholar 

  45. Yu CX. Intensity-modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435–1449.

    Article  CAS  PubMed  Google Scholar 

  46. Yu CX, Li XA, Ma L, et al. Clinical implementation of intensity-modulated arc therapy. Int J Radiat Oncol Biol Phys 2002;53:453–463.

    PubMed  Google Scholar 

  47. Zelefsky MJ, Fuks Z, Happersett L, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 2000;55:241–249.

    Article  CAS  PubMed  Google Scholar 

  48. Zelefsky MJ, Levin EJ, Hunt M, et al. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008;70:1124–1129.

    PubMed  Google Scholar 

  49. Zhu XR, Jursinic PA, Grimm DF, et al. Evaluation of Kodak EDR2 film for dose verification of intensity modulated radiation therapy delivered by a static multileaf collimator. Med Phys 2002;29:1687–1692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Wolff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, D., Stieler, F., Hermann, B. et al. Clinical Implementation of Volumetric Intensity-Modulated Arc Therapy (VMAT) with ERGO++. Strahlenther Onkol 186, 280–288 (2010). https://doi.org/10.1007/s00066-010-2071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-010-2071-z

Key Words

Schlüsselwörter

Navigation