Skip to main content

Advertisement

Log in

The regulatory function of SPARC in vascular biology

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

SPARC is a matricellular protein, able to modulate cell/ECM interactions and influence cell responses to growth factors, and therefore is particularly attuned to contribute to physiological processes involving changes in ECM and cell mobilization. Indeed, the list of biological processes affected by SPARC includes wound healing, tumor progression, bone formation, fibrosis, and angiogenesis. The process of angiogenesis is complex and involves a number of cellular processes such as endothelial cell proliferation, migration, ECM degradation, and synthesis, as well as pericyte recruitment to stabilize nascent vessels. In this review, we will summarize current results that explore the function of SPARC in the regulation of angiogenic events with a particular emphasis on the modulation of growth factor activity by SPARC in the context of blood vessel formation. The primary function of SPARC in angiogenesis remains unclear, as SPARC activity in some circumstances promotes angiogenesis and in others is more consistent with an anti-angiogenic activity. Undoubtedly, the mercurial nature of SPARC belies a redundancy of functional proteins in angiogenesis as well as cell-type-specific activities that alter signal transduction events in response to unique cellular milieus. Nonetheless, the investigation of cellular mechanisms that define functional activities of SPARC continue to contribute novel and exciting paradigms to vascular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SPARC:

Secreted protein acidic and rich in cysteine

ECM:

Extracellular matrix

PDGF:

Platelet-derived growth factor

VEGF:

Vascular endothelial growth factor

VEGFR1:

VEGF receptor 1

VEGFR2:

VEGF receptor 2

FGF:

Fibroblast growth factor

TGF-β:

Transforming growth factor-beta

BMP:

Bone morphogenic protein

αSMA:

Alpha smooth muscle actin

ER:

Endoplasmic reticulum

ILK:

Integrin-linked kinase

SHP-1:

Src homology region 2 domain-containing phosphatase-1

CNV:

Choroidal neovascularization

References

  1. Termine JD, Belcourt AB, Conn KM, Kleinman HK (1981) Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem 256:10403–10408

    PubMed  CAS  Google Scholar 

  2. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Article  PubMed  CAS  Google Scholar 

  3. Sage H, Johnson C, Bornstein P (1984) Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. J Biol Chem 259:3993–4007

    PubMed  CAS  Google Scholar 

  4. Mason IJ, Taylor A, Williams JG, Sage H, Hogan BL (1986) Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43,000. EMBO J 5:1465–1472

    PubMed  CAS  Google Scholar 

  5. Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827

    Article  PubMed  CAS  Google Scholar 

  6. Martinek N, Shahab J, Sodek J, Ringuette M (2007) Is SPARC an evolutionarily conserved collagen chaperone? J Dent Res 86:296–305

    Article  PubMed  CAS  Google Scholar 

  7. Sage H (1986) Culture shock. Selective uptake and rapid release of a novel serum protein by endothelial cells in vitro. J Biol Chem 261:7082–7092

    PubMed  CAS  Google Scholar 

  8. Sage H, Tupper J, Bramson R (1986) Endothelial cell injury in vitro is associated with increased secretion of an Mr 43,000 glycoprotein ligand. J Cell Physiol 127:373–387

    Article  PubMed  CAS  Google Scholar 

  9. Funk SE, Sage EH (1991) The Ca2(+)-binding glycoprotein SPARC modulates cell cycle progression in bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:2648–2652

    Article  PubMed  CAS  Google Scholar 

  10. Funk SE, Sage EH (1993) Differential effects of SPARC and cationic SPARC peptides on DNA synthesis by endothelial cells and fibroblasts. J Cell Physiol 154:53–63

    Article  PubMed  CAS  Google Scholar 

  11. Lane TF, Iruela-Arispe ML, Johnson RS, Sage EH (1994) SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125:929–943

    Article  PubMed  CAS  Google Scholar 

  12. Iruela-Arispe ML, Lane TF, Redmond D, Reilly M, Bolender RP, Kavanagh TJ et al (1995) Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol Biol Cell 6:327–343

    PubMed  CAS  Google Scholar 

  13. Brekken RA, Puolakkainen P, Graves DC, Workman G, Lubkin SR, Sage EH (2003) Enhanced growth of tumors in SPARC null mice is associated with changes in the ECM. J Clin Invest 111:487–495

    PubMed  CAS  Google Scholar 

  14. Puolakkainen PA, Brekken RA, Muneer S, Sage EH (2004) Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res 2:215–224

    PubMed  CAS  Google Scholar 

  15. Arnold SA, Rivera LB, Miller AF, Carbon JG, Dineen SP, Xie Y et al (2010) Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Dis Model Mech 3:57–72

    Article  PubMed  CAS  Google Scholar 

  16. Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3:239–246

    Article  PubMed  Google Scholar 

  17. Sullivan LA, Carbon JG, Roland CL, Toombs JE, Nyquist-Andersen M, Kavlie A et al (2010) r84, a novel therapeutic antibody against mouse and human VEGF with potent anti-tumor activity and limited toxicity induction. PLoS One 5:e12031

    Article  PubMed  Google Scholar 

  18. Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273:29635–29640

    Article  PubMed  CAS  Google Scholar 

  19. Chandrasekaran V, Ambati J, Ambati BK, Taylor EW (2007) Molecular docking and analysis of interactions between vascular endothelial growth factor (VEGF) and SPARC protein. J Mol Graph Model 26:775–782

    Article  PubMed  CAS  Google Scholar 

  20. Nozaki M, Sakurai E, Raisler BJ, Baffi JZ, Witta J, Ogura Y et al (2006) Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A. J Clin Invest 116:422–429

    Article  PubMed  CAS  Google Scholar 

  21. Hasselaar P, Sage EH (1992) SPARC antagonizes the effect of basic fibroblast growth factor on the migration of bovine aortic endothelial cells. J Cell Biochem 49:272–283

    Article  PubMed  CAS  Google Scholar 

  22. Motamed K, Blake DJ, Angello JC, Allen BL, Rapraeger AC, Hauschka SD et al (2003) Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A. J Cell Biochem 90:408–423

    Article  PubMed  CAS  Google Scholar 

  23. Quarto N, Amalric F (1994) Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J Cell Sci 107(Pt 11):3201–3212

    PubMed  CAS  Google Scholar 

  24. Templeton TJ, Hauschka SD (1992) FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol 154:169–181

    Article  PubMed  CAS  Google Scholar 

  25. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207

    Article  PubMed  CAS  Google Scholar 

  26. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    Article  PubMed  CAS  Google Scholar 

  27. Lichtenberger BM, Tan PK, Niederleithner H, Ferrara N, Petzelbauer P, Sibilia M (2010) Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140:268–279

    Article  PubMed  CAS  Google Scholar 

  28. Dickson MC, Martin JS, Cousins FM, Kulkarni AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  29. Dickson K, Philip A, Warshawsky H, O’Connor-McCourt M, Bergeron JJ (1995) Specific binding of endocrine transforming growth factor-beta 1 to vascular endothelium. J Clin Invest 95:2539–2554

    Article  PubMed  CAS  Google Scholar 

  30. Wrana JL, Maeno M, Hawrylyshyn B, Yao KL, Domenicucci C, Sodek J (1988) Differential effects of transforming growth factor-beta on the synthesis of extracellular matrix proteins by normal fetal rat calvarial bone cell populations. J Cell Biol 106:915–924

    Article  PubMed  CAS  Google Scholar 

  31. Wrana JL, Overall CM, Sodek J (1991) Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. Eur J Biochem 197:519–528

    Article  PubMed  CAS  Google Scholar 

  32. Ford R, Wang G, Jannati P, Adler D, Racanelli P, Higgins PJ et al (1993) Modulation of SPARC expression during butyrate-induced terminal differentiation of cultured human keratinocytes: regulation via a TGF-beta-dependent pathway. Exp Cell Res 206:261–275

    Article  PubMed  CAS  Google Scholar 

  33. Reed MJ, Puolakkainen P, Lane TF, Dickerson D, Bornstein P, Sage EH (1993) Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 41:1467–1477

    Article  PubMed  CAS  Google Scholar 

  34. Francki A, Bradshaw AD, Bassuk JA, Howe CC, Couser WG, Sage EH (1999) SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J Biol Chem 274:32145–32152

    Article  PubMed  CAS  Google Scholar 

  35. Francki A, McClure TD, Brekken RA, Motamed K, Murri C, Wang T et al (2004) SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells. J Cell Biochem 91:915–925

    Article  PubMed  CAS  Google Scholar 

  36. Schiemann BJ, Neil JR, Schiemann WP (2003) SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol Biol Cell 14:3977–3988

    Article  PubMed  CAS  Google Scholar 

  37. Chlenski A, Guerrero LJ, Yang Q, Tian Y, Peddinti R, Salwen HR et al (2007) SPARC enhances tumor stroma formation and prevents fibroblast activation. Oncogene 26:4513–4522

    Article  PubMed  CAS  Google Scholar 

  38. Antonelli-Orlidge A, Smith SR, D’Amore PA (1989) Influence of pericytes on capillary endothelial cell growth. Am Rev Respir Dis 140:1129–1131

    PubMed  CAS  Google Scholar 

  39. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86:4544–4548

    Article  PubMed  CAS  Google Scholar 

  40. Sato Y, Rifkin DB (1989) Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol 109:309–315

    Article  PubMed  CAS  Google Scholar 

  41. Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin DB (1990) Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol 111:757–763

    Article  PubMed  CAS  Google Scholar 

  42. Rivera LB, Brekken RA (2011) SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-β1 activity. J Cell Biol 193:1305–1319

    Google Scholar 

  43. Kaufmann B, Muller S, Hanisch FG, Hartmann U, Paulsson M, Maurer P et al (2004) Structural variability of BM-40/SPARC/osteonectin glycosylation: implications for collagen affinity. Glycobiology 14:609–619

    Article  PubMed  CAS  Google Scholar 

  44. Murphy-Ullrich JE, Lane TF, Pallero MA, Sage EH (1995) SPARC mediates focal adhesion disassembly in endothelial cells through a follistatin-like region and the Ca(2+)-binding EF-hand. J Cell Biochem 57:341–350

    Article  PubMed  CAS  Google Scholar 

  45. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    Article  PubMed  CAS  Google Scholar 

  46. Abraham S, Kogata N, Fassler R, Adams RH (2008) Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ Res 102:562–570

    Article  PubMed  CAS  Google Scholar 

  47. Carnevale E, Fogel E, Aplin AC, Gelati M, Howson KM, Zhu WH et al (2007) Regulation of postangiogenic neovessel survival by beta1 and beta3 integrins in collagen and fibrin matrices. J Vasc Res 44:40–50

    Article  PubMed  CAS  Google Scholar 

  48. Nie J, Sage EH (2009) SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. J Biol Chem 284:1279–1290

    Article  PubMed  CAS  Google Scholar 

  49. Weaver MS, Workman G, Sage EH (2008) The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem 283:22826–22837

    Article  PubMed  CAS  Google Scholar 

  50. Wickstrom SA, Lange A, Montanez E, Fassler R (2010) The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase!. EMBO J 29:281–291

    Article  PubMed  Google Scholar 

  51. Barker TH, Baneyx G, Cardo-Vila M, Workman GA, Weaver M, Menon PM et al (2005) SPARC regulates extracellular matrix organization through its modulation of integrin-linked kinase activity. J Biol Chem 280:36483–36493

    Article  PubMed  CAS  Google Scholar 

  52. Shi Q, Bao S, Maxwell JA, Reese ED, Friedman HS, Bigner DD et al (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279:52200–52209

    Article  PubMed  CAS  Google Scholar 

  53. Thompson WD, Stirk CM, Melvin WT, Smith EB (1996) Plasmin, fibrin degradation and angiogenesis. Nat Med 2:493

    Article  PubMed  CAS  Google Scholar 

  54. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713

    Article  PubMed  CAS  Google Scholar 

  55. Hynes RO (2007) Cell–matrix adhesion in vascular development. J Thromb Haemost 5 Suppl 1:32–40

    Article  PubMed  CAS  Google Scholar 

  56. McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K et al (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol 22:7667–7677

    Article  PubMed  CAS  Google Scholar 

  57. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  PubMed  CAS  Google Scholar 

  58. Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185

    Article  PubMed  CAS  Google Scholar 

  59. Somanath PR, Ciocea A, Byzova TV (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64

    Article  PubMed  CAS  Google Scholar 

  60. Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27:631–644

    Article  PubMed  CAS  Google Scholar 

  61. Alghisi GC, Ruegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13:113–135

    Article  PubMed  CAS  Google Scholar 

  62. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed  CAS  Google Scholar 

  63. De S, Chen J, Narizhneva NV, Heston W, Brainard J, Sage EH et al (2003) Molecular pathway for cancer metastasis to bone. J Biol Chem 278:39044–39050

    Article  PubMed  CAS  Google Scholar 

  64. Pavasant P, Yongchaitrakul T, Pattamapun K, Arksornnukit M (2003) The synergistic effect of TGF-beta and 1, 25-dihydroxyvitamin D3 on SPARC synthesis and alkaline phosphatase activity in human pulp fibroblasts. Arch Oral Biol 48:717–722

    Article  PubMed  CAS  Google Scholar 

  65. Said N, Motamed K (2005) Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. Am J Pathol 167:1739–1752

    Article  PubMed  CAS  Google Scholar 

  66. Said N, Najwer I, Motamed K (2007) Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. Am J Pathol 170:1054–1063

    Article  PubMed  CAS  Google Scholar 

  67. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  68. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    PubMed  CAS  Google Scholar 

  69. Puolakkainen P, Bradshaw AD, Kyriakides TR, Reed M, Brekken R, Wight T et al (2003) Compromised production of extracellular matrix in mice lacking secreted protein, acidic and rich in cysteine (SPARC) leads to a reduced foreign body reaction to implanted biomaterials. Am J Pathol 162:627–635

    Article  PubMed  CAS  Google Scholar 

  70. Motamed K, Funk SE, Koyama H, Ross R, Raines EW, Sage EH (2002) Inhibition of PDGF-stimulated and matrix-mediated proliferation of human vascular smooth muscle cells by SPARC is independent of changes in cell shape or cyclin-dependent kinase inhibitors. J Cell Biochem 84:759–771

    Article  PubMed  Google Scholar 

  71. Raines EW, Lane TF, Iruela-Arispe ML, Ross R, Sage EH (1992) The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci USA 89:1281–1285

    Article  PubMed  CAS  Google Scholar 

  72. Weaver MS, Sage EH, Yan Q (2006) Absence of SPARC in lens epithelial cells results in altered adhesion and extracellular matrix production in vitro. J Cell Biochem 97:423–432

    Article  PubMed  CAS  Google Scholar 

  73. Pavasant P, Yongchaitrakul T (2008) Secreted protein acidic, rich in cysteine induces pulp cell migration via alphavbeta3 integrin and extracellular signal-regulated kinase. Oral Dis 14:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH, NCI through R01CA118240 (RAB), NIGMS through T32 GM008203 (LBR), NIDCR through P20RR017696 (ADB), NIHLB through 094517 (ADB), and a Merit Award from the Veteran’s Administration to ADB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy D. Bradshaw or Rolf A. Brekken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, L.B., Bradshaw, A.D. & Brekken, R.A. The regulatory function of SPARC in vascular biology. Cell. Mol. Life Sci. 68, 3165–3173 (2011). https://doi.org/10.1007/s00018-011-0781-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0781-8

Keywords

Navigation