Skip to main content
Log in

Control of infection by pyroptosis and autophagy: role of TLR and NLR

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cells can die by distinct mechanisms with particular impacts on the immune response. In addition to apoptosis and necrosis, recent studies lead to characterization of a new pro-inflammatory form of cell death, pyroptosis. TLR and NLR, central innate immune sensors, can control infections by modulating host cell survival. In addition, TLRs can promote the induction of autophagy, thus promoting delivery of infecting pathogens to the lysosomes. On the other hand, activation of some NLR members, especially NLRC4 and NAIP5, leads to the infected cell death by pyroptosis, which is accompanied by secretion of the pro-inflammatory cytokines IL-1β, IL-18, and IL-33. Data presented here illustrate how the compartmentalization of the innate immune sensors can influence the outcome of infections by controlling the fate of host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  2. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081

    Article  CAS  PubMed  Google Scholar 

  3. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  PubMed  Google Scholar 

  4. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227:106–128

    Article  CAS  PubMed  Google Scholar 

  5. Inohara N, Koseki T, del Peso L, Hu Y, Yee C, Chen S, Carrio R, Merino J, Liu D, Ni J, Núñez G (1999) Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J Biol Chem 274:14560–14567

    Article  CAS  PubMed  Google Scholar 

  6. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276:4812–4818 Epub 2000 Nov 21

    Article  CAS  PubMed  Google Scholar 

  7. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  8. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22 Epub 2006 Sep 15

    Article  CAS  PubMed  Google Scholar 

  9. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    Article  CAS  PubMed  Google Scholar 

  10. Mariathasan S, Weiss D, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee W, Weinrauch Y, Monack D, Dixit V (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232 Epub 2006 Jan 11

    Article  CAS  PubMed  Google Scholar 

  11. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241 Epub 2006 Jan 11

    Article  CAS  PubMed  Google Scholar 

  12. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674–677 Epub 2008 Apr 10

    Article  CAS  PubMed  Google Scholar 

  13. Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14:1929–1934

    Article  CAS  PubMed  Google Scholar 

  14. Marina-Garcia N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Nunez G (2008) Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol 180:4050–4057

    CAS  PubMed  Google Scholar 

  15. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559

    Article  CAS  PubMed  Google Scholar 

  16. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327

    Article  CAS  PubMed  Google Scholar 

  17. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107 Epub 2008 Feb 20

    Article  CAS  PubMed  Google Scholar 

  18. Kanneganti TD, Ozören N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Núñez G (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236

    Article  CAS  PubMed  Google Scholar 

  19. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N, Núñez G (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 281:36560–36568 Epub 2006 Sep 28

    Article  CAS  PubMed  Google Scholar 

  20. Lamkanfi M, Malireddi RK, Kanneganti TD (2009) Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem. 284:20574–20581 Epub 2009 Jun 9

    Article  CAS  PubMed  Google Scholar 

  21. Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I, Corradin G, Tschopp J (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4:e6510

    Article  PubMed  Google Scholar 

  22. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA, Olivier M (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559 Epub 2009 Aug 21

    Article  PubMed  Google Scholar 

  23. Nour AM, Yeung YG, Santambrogio L, Boyden ED, Stanley ER, Brojatsch J (2009) Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect Immun 77:1262–1271 Epub 2009 Jan 5

    Article  CAS  PubMed  Google Scholar 

  24. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES (2001) Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 276:28309–28313 Epub 2001 Jun 4

    Article  CAS  PubMed  Google Scholar 

  25. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girmam M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    Article  CAS  PubMed  Google Scholar 

  26. Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, Henry T, Sun YH, Cado D, Dietrich WF, Monack DM, Tsolis RM, Vance RE (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178

    Article  CAS  PubMed  Google Scholar 

  27. Zamboni DS, Kobayashi KS, Kohlsdorf T, Ogura Y, Long EM, Vance RE, Kuida K, Mariathasan S, Dixit VM, Flavell RA, Dietrich WF, Roy CR (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325

    Article  CAS  PubMed  Google Scholar 

  28. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Article  CAS  PubMed  Google Scholar 

  29. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575

    Article  CAS  PubMed  Google Scholar 

  30. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Núñez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in Salmonella-infected macrophages. Nat Immunol 7:576–582

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111

    Article  PubMed  Google Scholar 

  32. Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039

    Article  CAS  PubMed  Google Scholar 

  33. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa-mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245

    Article  CAS  PubMed  Google Scholar 

  34. Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozören N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Núñez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223

    Article  CAS  PubMed  Google Scholar 

  35. Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564

    CAS  PubMed  Google Scholar 

  36. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233

    Article  CAS  PubMed  Google Scholar 

  37. Grimm S, Stanger BZ, Leder P (1996) RIP and FADD: two “death domain”-containing proteins can induce apoptosis by convergent, but dissociable, pathways. Proc Natl Acad Sci USA 93:10923–10927

    Article  CAS  PubMed  Google Scholar 

  38. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  39. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119 Epub 2005 May 29

    Article  CAS  PubMed  Google Scholar 

  40. Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  CAS  PubMed  Google Scholar 

  41. Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161

    Article  PubMed  Google Scholar 

  42. Ting JP, Willingham SB, Bergstralh DT (2008) NLRs at the intersection of cell death and immunity. Nat Rev Immunol 8:372–379

    Article  CAS  PubMed  Google Scholar 

  43. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244 Epub 2006 Jan 22

    Article  CAS  PubMed  Google Scholar 

  44. Kang TJ, Basu S, Zhang L, Thomas KE, Vogel SN, Baillie L, Cross AS (2008) Bacillus anthracis spores and lethal toxin induce IL-1beta via functionally distinct signaling pathways. Eur J Immunol 38:1574–1584

    Article  CAS  PubMed  Google Scholar 

  45. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436 Epub 2009 Apr 1

    Article  CAS  PubMed  Google Scholar 

  46. Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581 Epub 2009 Aug 14

    Article  CAS  PubMed  Google Scholar 

  47. Franchi L, Kanneganti TD, Dubyak GR, Nunez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282:18810–18818 Epub 2007 May 9

    Article  CAS  PubMed  Google Scholar 

  48. Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO (2009) Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 5:e1000361 Epub 2009 Apr 3

    Article  PubMed  Google Scholar 

  49. Sanjuan MA, Milasta S, Green DR (2009) Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 227:203–220

    Article  CAS  PubMed  Google Scholar 

  50. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V (2008) Toll-like receptors control autophagy. EMBO J 27:1110–1121

    Article  CAS  PubMed  Google Scholar 

  51. Shi CS, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283:33175–33182

    Article  CAS  PubMed  Google Scholar 

  52. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257

    Article  CAS  PubMed  Google Scholar 

  53. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268 Epub 2008 Oct 5

    Article  CAS  PubMed  Google Scholar 

  54. Andrade RM, Wessendarp M, Gubbels MJ, Striepen B, Subauste CS (2006) CD40 induces macrophage anti-Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest 116:2366–2377

    Article  CAS  PubMed  Google Scholar 

  55. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    Article  CAS  PubMed  Google Scholar 

  56. Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJ, Yap GS (2006) Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 203:2063–2071 Epub 2006 Aug 28

    Article  CAS  PubMed  Google Scholar 

  57. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281:11374–11383

    Article  CAS  PubMed  Google Scholar 

  58. Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163:1123–1131

    Article  CAS  PubMed  Google Scholar 

  59. Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778

    Article  CAS  PubMed  Google Scholar 

  60. Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125 Epub 2007 Mar 27

    CAS  PubMed  Google Scholar 

  61. Checroun C, Wehrly TD, Fischer ER, Hayes SF, Celli J (2006) Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci USA 103:14578–14583 Epub 2006 Sep 18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

KRB is supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil and from the Brazilian Research Council (CNPq). RM is an Investigator at the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina R. Bortoluci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortoluci, K.R., Medzhitov, R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell. Mol. Life Sci. 67, 1643–1651 (2010). https://doi.org/10.1007/s00018-010-0335-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0335-5

Keywords

Navigation