Skip to main content
Log in

Thermodynamics and instabilities of a strongly coupled anisotropic plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature \( \mathcal{N} = 4 \) super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent θ-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [SPIRES].

    ADS  Google Scholar 

  2. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [SPIRES].

    ADS  Google Scholar 

  3. E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog. Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [SPIRES].

    Article  ADS  Google Scholar 

  4. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [SPIRES].

    ADS  Google Scholar 

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  6. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  8. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [SPIRES].

  9. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, arXiv:1105.3472 [SPIRES].

  10. J.M. Maldacena and J.G. Russo, Large-N limit of non-commutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Alishahiha, Y. Oz and M.M. Sheikh-Jabbari, Supergravity and Large-N Noncommutative Field Theories, JHEP 11 (1999) 007 [hep-th/9909215] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Harmark and N.A. Obers, Phase structure of non-commutative field theories and spinning brane bound states, JHEP 03 (2000) 024 [hep-th/9911169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. R.-G. Cai and N. Ohta, On the thermodynamics of large-N non-commutative super Yang-Mills theory, Phys. Rev. D 61 (2000) 124012 [hep-th/9910092] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. R.-G. Cai and N. Ohta, Noncommutative and ordinary super Yang-Mills on (D(p − 2), Dp) bound states, JHEP 03 (2000) 009 [hep-th/0001213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].

    ADS  Google Scholar 

  17. P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Superconductivity from D3/D7: Holographic Pion Superfluid, JHEP 11 (2009) 070 [arXiv:0810.3970] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [SPIRES].

    ADS  Google Scholar 

  20. M. Natsuume and M. Ohta, The shear viscosity of holographic superfluids, Prog. Theor. Phys. 124 (2010) 931 [arXiv:1008.4142] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  21. J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein gravity, Phys. Lett. B 699 (2011) 301 [arXiv:1011.5912] [SPIRES].

    ADS  Google Scholar 

  22. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite Temperature Large-N Gauge Theory with Quarks in an External Magnetic Field, JHEP 07 (2008) 080 [arXiv:0709.1547] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Quarks in an External Electric Field in Finite Temperature Large-N Gauge Theory, JHEP 08 (2008) 092 [arXiv:0709.1554] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [SPIRES].

    Article  MathSciNet  Google Scholar 

  27. E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [SPIRES].

    Article  MathSciNet  Google Scholar 

  28. R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP 09 (2008) 026 [arXiv:0806.2141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. W. Florkowski, Anisotropic fluid dynamics in the early stage of relativistic heavy-ion collisions, Phys. Lett. B 668 (2008) 32 [arXiv:0806.2268] [SPIRES].

    ADS  Google Scholar 

  30. W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at the early stages of relativistic heavy-ion collisions, Acta Phys. Polon. B 40 (2009) 2843 [arXiv:0901.4653] [SPIRES].

    ADS  Google Scholar 

  31. R. Ryblewski and W. Florkowski, Early anisotropic hydrodynamics and the RHIC early-thermalization and HBT puzzles, Phys. Rev. C 82 (2010) 024903 [arXiv:1004.1594] [SPIRES].

    ADS  Google Scholar 

  32. W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [SPIRES].

    ADS  Google Scholar 

  33. M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [SPIRES].

    ADS  Google Scholar 

  34. R. Ryblewski and W. Florkowski, Non-boost-invariant motion of dissipative and highly anisotropic fluid, J. Phys. G 38 (2011) 015104 [arXiv:1007.4662] [SPIRES].

    ADS  Google Scholar 

  35. M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys. A 856 (2011) 68 [arXiv:1011.3056] [SPIRES].

    ADS  Google Scholar 

  36. R. Ryblewski and W. Florkowski, Highly anisotropic hydrodynamics | discussion of the model assumptions and forms of the initial conditions, Acta Phys. Polon. B 42 (2011) 115 [arXiv:1011.6213] [SPIRES].

    Article  Google Scholar 

  37. R. Ryblewski and W. Florkowski, Highly-anisotropic and strongly-dissipative hydrodynamics with transverse expansion, arXiv:1103.1260 [SPIRES].

  38. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. E.S. Weibel, Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Veloc ity Distribution, Phys. Rev. Lett. 2 (1959) 83 [SPIRES].

    Article  ADS  Google Scholar 

  41. S. Mrowczynski, Stream instabilities of the quark-gluon plasma, Phys. Lett. B 214 (1988) 587 [SPIRES].

    ADS  Google Scholar 

  42. S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [SPIRES].

    ADS  Google Scholar 

  43. S. Mrowczynski, Color collective effects at the early stage of ultrarelativistic heavy ion collisions, Phys. Rev. C 49 (1994) 2191 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. S. Mrowczynski, Color filamentation in ultrarelativistic heavy-ion collisions, Phys. Lett. B 393 (1997) 26 [hep-ph/9606442] [SPIRES].

    ADS  Google Scholar 

  45. J. Randrup and S. Mrowczynski, Chromodynamic Weibel instabilities in relativistic nuclear collisions, Phys. Rev. C 68 (2003) 034909 [nucl-th/0303021] [SPIRES].

    ADS  Google Scholar 

  46. P. Romatschke and M. Strickland, Collective Modes of an Anisotropic quark-gluon Plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [SPIRES].

    ADS  Google Scholar 

  47. P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom-up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [SPIRES].

    Article  ADS  Google Scholar 

  48. P. Romatschke and M. Strickland, Collective modes of an anisotropic quark-gluon plasma. II, Phys. Rev. D 70 (2004) 116006 [hep-ph/0406188] [SPIRES].

    ADS  Google Scholar 

  49. P.B. Arnold, J. Lenaghan, G.D. Moore and L.G. Yaffe, Apparent thermalization due to plasma instabilities in quark gluon plasma, Phys. Rev. Lett. 94 (2005) 072302 [nucl-th/0409068] [SPIRES].

    Article  ADS  Google Scholar 

  50. A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [SPIRES].

    Article  ADS  Google Scholar 

  51. P.B. Arnold, G.D. Moore and L.G. Yaffe, The fate of non-abelian plasma instabilities in 3 + 1 dimensions, Phys. Rev. D 72 (2005) 054003 [hep-ph/0505212] [SPIRES].

    ADS  Google Scholar 

  52. D. Kharzeev, Parity violation in hot QCD: Why it can happen and how to look for it, Phys. Lett. B 633 (2006) 260 [hep-ph/0406125] [SPIRES].

    ADS  Google Scholar 

  53. D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [SPIRES].

    ADS  Google Scholar 

  54. D. Kharzeev, R.D. Pisarski and M.H.G. Tytgat, Possibility of spontaneous parity violation in hot QCD, Phys. Rev. Lett. 81 (1998) 512 [hep-ph/9804221] [SPIRES].

    Article  ADS  Google Scholar 

  55. D.E. Kharzeev, R.D. Pisarski and M.H.G. Tytgat, Aspects of parity, CP and time reversal violation in hot QCD, hep-ph/0012012 [SPIRES].

  56. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [SPIRES].

    ADS  Google Scholar 

  57. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [SPIRES].

    ADS  Google Scholar 

  58. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    Article  ADS  Google Scholar 

  59. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  60. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006) 020 [hep-th/0607123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  65. S. Bhattacharyya et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [SPIRES].

    Article  ADS  Google Scholar 

  66. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  67. M. Rangamani, Gravity & Hydrodynamics: Lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [SPIRES].

    Google Scholar 

  69. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  70. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New Horizons for Black Holes and Branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [SPIRES].

    Article  ADS  Google Scholar 

  73. T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  76. H. Singh, Special limits and non-relativistic solutions, JHEP 12 (2010) 061 [arXiv:1009.0651] [SPIRES].

    Article  ADS  Google Scholar 

  77. R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  78. A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  79. D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  80. N. Halmagyi, M. Petrini and A. Zaffaroni, Non-Relativistic Solutions of N = 2 Gauged Supergravity, arXiv:1102.5740 [SPIRES].

  81. W. Chemissany and J. Hartong, From D3-branes to Lifshitz Space-Times, arXiv:1105.0612 [SPIRES].

  82. I. Amado and A.F. Faedo, Lifshitz black holes in string theory, arXiv:1105.4862 [SPIRES].

  83. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  85. M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. C.-M. Chen and D.-W. Pang, Holography of Charged Dilaton Black Holes in General Dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].

    Article  ADS  Google Scholar 

  87. K. Goldstein et al., Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [SPIRES].

    Article  ADS  Google Scholar 

  88. G. Bertoldi, B.A. Burrington and A.W. Peet, Thermal behavior of charged dilatonic black branes in AdS and UV completions of Lifshitz-like geometries, Phys. Rev. D 82 (2010) 106013 [arXiv:1007.1464] [SPIRES].

    ADS  Google Scholar 

  89. G. Bertoldi, B.A. Burrington, A.W. Peet and I.G. Zadeh, Lifshitz-like black brane thermodynamics in higher dimensions, Phys. Rev. D 83 (2011) 126006 [arXiv:1101.1980] [SPIRES].

    ADS  Google Scholar 

  90. M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [SPIRES].

    Article  ADS  Google Scholar 

  91. M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional Quantum Hall Effect via Holography: Chern-Simons, Edge States and Hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  92. D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  93. A. Kehagias and K. Sfetsos, On asymptotic freedom and confinement from type-IIB supergravity, Phys. Lett. B 456 (1999) 22 [hep-th/9903109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. H. Liu and A.A. Tseytlin, D3-brane D-instanton configuration and N = 4 super YM theory in constant self-dual background, Nucl. Phys. B 553 (1999) 231 [hep-th/9903091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  95. J. Erdmenger, K. Ghoroku and R. Meyer, Holographic (De)confinement Transitions in Cosmological Backgrounds, arXiv:1105.1776 [SPIRES].

  96. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  97. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  98. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  99. S. Nojiri, S.D. Odintsov, S. Ogushi, A. Sugamoto and M. Yamamoto, Axion-dilatonic conformal anomaly from AdS/CFT correspondence, Phys. Lett. B 465 (1999) 128 [hep-th/9908066] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. I. Papadimitriou, Holographic Renormalization of general dilaton-axion gravity, arXiv:1106.4826 [SPIRES].

  101. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  102. M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  103. I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  104. M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  105. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic Renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  106. S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and Temperature of Black 3-Branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  107. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  108. A. Petkou and K. Skenderis, A non-renormalization theorem for conformal anomalies, Nucl. Phys. B 561 (1999) 100 [hep-th/9906030] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  109. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  110. D. Mateos, R.C. Myers and R.M. Thomson, Holographic viscosity of fundamental matter, Phys. Rev. Lett. 98 (2007) 101601 [hep-th/0610184] [SPIRES].

    Article  ADS  Google Scholar 

  111. D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  112. F. Bigazzi et al., D3-D7 quark-gluon Plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [SPIRES].

    Article  ADS  Google Scholar 

  113. S.W. Hawking and S.F. Ross, Duality between Electric and Magnetic Black Holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  114. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  115. L.D. Landau and E.M. Lifshitz, Course Theoretical Physics. Vol. 5: Statistical Physics, Pergamon Press, Oxford U.K. (1980).

    Google Scholar 

  116. M.G. Alford, K. Rajagopal and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color superconductivity, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395] [SPIRES].

    ADS  Google Scholar 

  117. K. Rajagopal, QCD at finite baryon density: Chiral symmetry restoration and color superconductivity, Prog. Theor. Phys. Suppl. 131 (1998) 619 [hep-ph/9803341] [SPIRES].

    Article  ADS  Google Scholar 

  118. J. Berges and K. Rajagopal, Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature, Nucl. Phys. B 538 (1999) 215 [hep-ph/9804233] [SPIRES].

    Article  ADS  Google Scholar 

  119. G. Baym, Confinement And Deconfinement Of Quarks In Nuclear Matter, Physica A 96 (1979) 131.

    ADS  Google Scholar 

  120. T. Celik, F. Karsch and H. Satz, A Percolation Approach To Strongly Interacting Matter, Phys. Lett. B 97 (1980) 128 [SPIRES].

    ADS  Google Scholar 

  121. S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  122. K. Copsey and R. Mann, Pathologies in Asymptotically Lifshitz Spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  123. I. Kirsch and D. Vaman, The D3/D7 background and flavor dependence of Regge trajectories, Phys. Rev. D 72 (2005) 026007 [hep-th/0505164] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  124. R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [SPIRES].

    ADS  Google Scholar 

  125. F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  126. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [SPIRES].

    Google Scholar 

  127. A. Hashimoto and N. Itzhaki, Non-commutative Yang-Mills and the AdS/CFT correspondence, Phys. Lett. B 465 (1999) 142 [hep-th/9907166] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  128. M. Nardi and H. Satz, String clustering and J = Ψ suppression in nuclear collisions, Phys. Lett. B 442 (1998) 14 [hep-ph/9805247] [SPIRES].

    ADS  Google Scholar 

  129. H. Satz, Deconfinement and percolation, Nucl. Phys. A 642 (1998) 130 [hep-ph/9805418] [SPIRES].

    ADS  Google Scholar 

  130. R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom-up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [SPIRES].

    ADS  Google Scholar 

  131. M. Martinez and M. Strickland, Constraining relativistic viscous hydrodynamical evolution, Phys. Rev. C 79 (2009) 044903 [arXiv:0902.3834] [SPIRES].

    ADS  Google Scholar 

  132. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  133. M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [arXiv:0712.2916] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  134. C.E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, Oxford U.K. (1995), http://en.wikipedia.org/wiki/Cavitation.

    Google Scholar 

  135. G. Torrieri, B. Tomasik and I. Mishustin, Bulk Viscosity driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 034903 [arXiv:0707.4405] [SPIRES].

    ADS  Google Scholar 

  136. G. Torrieri, B. Tomasik and I. Mishustin, Freeze-out by bulk viscosity driven instabilities, Acta Phys. Polon. B 39 (2008) 1733 [arXiv:0803.4070] [SPIRES].

    ADS  Google Scholar 

  137. G. Torrieri and I. Mishustin, Instability of Boost-invariant hydrodynamics with a QCD inspired bulk viscosity, Phys. Rev. C 78 (2008) 021901 [arXiv:0805.0442] [SPIRES].

    ADS  Google Scholar 

  138. R.J. Fries, B. Müller and A. Schafer, Stress Tensor and Bulk Viscosity in Relativistic Nuclear Collisions, Phys. Rev. C 78 (2008) 034913 [arXiv:0807.4333] [SPIRES].

    ADS  Google Scholar 

  139. K. Rajagopal and N. Tripuraneni, Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion, JHEP 03 (2010) 018 [arXiv:0908.1785] [SPIRES].

    Article  ADS  Google Scholar 

  140. A. Klimek, L. Leblond and A. Sinha, Cavitation in holographic sQGP, Phys. Lett. B 701 (2011) 144 [arXiv:1103.3987] [SPIRES].

    ADS  Google Scholar 

  141. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  142. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  143. P.K. Townsend, Positive Energy And The Scalar Potential In Higher Dimensional (super)gravity Theories, Phys. Lett. B 148 (1984) 55 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  144. L. Mezincescu and P.K. Townsend, Stability At A Local Maximum In Higher Dimensional Anti-de Sitter Space And Applications To Supergravity, Ann. Phys. 160 (1985) 406 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  145. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  146. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  147. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  148. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  149. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  150. P. Romatschke and M. Strickland, Energy Loss of a Heavy Fermion in an Anisotropic QED Plasma, Phys. Rev. D 69 (2004) 065005 [hep-ph/0309093] [SPIRES].

    ADS  Google Scholar 

  151. P. Romatschke and M. Strickland, Collisional energy loss of a heavy quark in an anisotropic quark-gluon plasma, Phys. Rev. D 71 (2005) 125008 [hep-ph/0408275] [SPIRES].

    ADS  Google Scholar 

  152. P. Romatschke and M. Strickland, Progress in anisotropic plasma physics, hep-ph/0408314 [SPIRES].

  153. A. Dumitru, Y. Nara, B. Schenke and M. Strickland, Jet broadening in unstable non-Abelian plasmas, Phys. Rev. C 78 (2008) 024909 [arXiv:0710.1223] [SPIRES].

    ADS  Google Scholar 

  154. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled \( \mathcal{N} = 4 \) Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [SPIRES].

    ADS  Google Scholar 

  155. C.P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries, JHEP 09 (2006) 032 [hep-th/0605191] [SPIRES].

    Article  ADS  Google Scholar 

  156. E. Caceres and A. Guijosa, Drag force in charged N = 4 SYM plasma, JHEP 11 (2006) 077 [hep-th/0605235] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  157. E. Caceres and A. Guijosa, On Drag Forces and Jet Quenching in Strongly Coupled Plasmas, JHEP 12 (2006) 068 [hep-th/0606134] [SPIRES].

    Article  ADS  Google Scholar 

  158. J.J. Friess, S.S. Gubser and G. Michalogiorgakis, Dissipation from a heavy quark moving through N = 4 super-Yang-Mills plasma, JHEP 09 (2006) 072 [hep-th/0605292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  159. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, The stress tensor of a quark moving through N = 4 thermal plasma, Phys. Rev. D 75 (2007) 106003 [hep-th/0607022] [SPIRES].

    ADS  Google Scholar 

  160. M. Chernicoff, J.A. Garcia and A. Guijosa, The energy of a moving quark-antiquark pair in an N = 4 SYM plasma, JHEP 09 (2006) 068 [hep-th/0607089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  161. J. Casalderrey-Solana, D. Fernandez and D. Mateos, A New Mechanism of Quark Energy Loss, Phys. Rev. Lett. 104 (2010) 172301 [arXiv:0912.3717] [SPIRES].

    Article  ADS  Google Scholar 

  162. J. Casalderrey-Solana, D. Fernandez and D. Mateos, Cherenkov mesons as in-medium quark energy loss, JHEP 11 (2010) 091 [arXiv:1009.5937] [SPIRES].

    Article  ADS  Google Scholar 

  163. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [SPIRES].

    Article  ADS  Google Scholar 

  164. A. Buchel, On jet quenching parameters in strongly coupled non- conformal gauge theories, Phys. Rev. D 74 (2006) 046006 [hep-th/0605178] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  165. J.F. Vazquez-Poritz, Enhancing the jet quenching parameter from marginal deformations, hep-th/0605296 [SPIRES].

  166. F.-L. Lin and T. Matsuo, Jet quenching parameter in medium with chemical potential from AdS/CFT, Phys. Lett. B 641 (2006) 45 [hep-th/0606136] [SPIRES].

    ADS  Google Scholar 

  167. S.D. Avramis and K. Sfetsos, Supergravity and the jet quenching parameter in the presence of R-charge densities, JHEP 01 (2007) 065 [hep-th/0606190] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  168. N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finite ’t Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  169. F. D’Eramo, H. Liu and K. Rajagopal, Transverse Momentum Broadening and the Jet Quenching Parameter, Redux, arXiv:1006.1367 [SPIRES].

  170. F. D’Eramo, H. Liu and K. Rajagopal, Jet Quenching Parameter via Soft Collinear Effective Theory (SCET), arXiv:1010.0890 [SPIRES].

  171. A. Nata Atmaja and K. Schalm, Anisotropic Drag Force from 4D Kerr-AdS Black Holes, JHEP 04 (2011) 070 [arXiv:1012.3800] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  172. K.B. Fadafan, Drag force in asymptotically Lifshitz spacetimes, arXiv:0912.4873 [SPIRES].

  173. A. Dumitru, Y. Guo and M. Strickland, The heavy-quark potential in an anisotropic (viscous) plasma, Phys. Lett. B 662 (2008) 37 [arXiv:0711.4722] [SPIRES].

    ADS  Google Scholar 

  174. A. Dumitru, Y. Guo, A. Mócsy and M. Strickland, Quarkonium states in an anisotropic QCD plasma, Phys. Rev. D 79 (2009) 054019 [arXiv:0901.1998] [SPIRES].

    ADS  Google Scholar 

  175. A. Dumitru, Y. Guo and M. Strickland, The imaginary part of the static gluon propagator in an anisotropic (viscous) QCD plasma, Phys. Rev. D 79 (2009) 114003 [arXiv:0903.4703] [SPIRES].

    ADS  Google Scholar 

  176. M. Margotta, K. McCarty, C. McGahan, M. Strickland and D. Yager-Elorriaga, Quarkonium states in a complex-valued potential, Phys. Rev. D 83 (2011) 105019 [arXiv:1101.4651] [SPIRES].

    ADS  Google Scholar 

  177. Q.J. Ejaz, T. Faulkner, H. Liu, K. Rajagopal and U.A. Wiedemann, A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT, JHEP 04 (2008) 089 [arXiv:0712.0590] [SPIRES].

    Article  Google Scholar 

  178. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  179. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  180. I. Kirsch, Generalizations of the AdS/CFT correspondence, Fortsch. Phys. 52 (2004) 727 [hep-th/0406274] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  181. C. Hoyos-Badajoz, K. Landsteiner and S. Montero, Holographic Meson Melting, JHEP 04 (2007) 031 [hep-th/0612169] [SPIRES].

    Article  ADS  Google Scholar 

  182. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from ultrarelativistic plasmas, JHEP 11 (2001) 057 [hep-ph/0109064] [SPIRES].

    Article  ADS  Google Scholar 

  183. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [SPIRES].

    Article  ADS  Google Scholar 

  184. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and Gluon Emission in Relativistic Plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [SPIRES].

    Article  ADS  Google Scholar 

  185. P. Stankus, Direct photon production in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 55 (2005) 517 [SPIRES].

    Article  ADS  Google Scholar 

  186. B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev. D 76 (2007) 025023 [hep-ph/0611332] [SPIRES].

    ADS  Google Scholar 

  187. M. Martinez and M. Strickland, Measuring QGP thermalization time with dileptons, Phys. Rev. Lett. 100 (2008) 102301 [arXiv:0709.3576] [SPIRES].

    Article  ADS  Google Scholar 

  188. M. Martinez and M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma, Phys. Rev. C 78 (2008) 034917 [arXiv:0805.4552] [SPIRES].

    ADS  Google Scholar 

  189. M. Martinez and M. Strickland, Suppression of forward dilepton production from an anisotropic quark-gluon plasma, Eur. Phys. J. C 61 (2009) 905 [arXiv:0808.3969] [SPIRES].

    Article  ADS  Google Scholar 

  190. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [SPIRES].

    Article  Google Scholar 

  191. A. Parnachev and D.A. Sahakyan, Photoemission with Chemical Potential from QCD Gravity Dual, Nucl. Phys. B 768 (2007) 177 [hep-th/0610247] [SPIRES].

    Article  ADS  Google Scholar 

  192. D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  193. J. Casalderrey-Solana and D. Mateos, Prediction of a Photon Peak in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 102 (2009) 192302 [arXiv:0806.4172] [SPIRES].

    Article  ADS  Google Scholar 

  194. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  195. E. Perlmutter, Domain Wall Holography for Finite Temperature Scaling Solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mateos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mateos, D., Trancanelli, D. Thermodynamics and instabilities of a strongly coupled anisotropic plasma. J. High Energ. Phys. 2011, 54 (2011). https://doi.org/10.1007/JHEP07(2011)054

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)054

Keywords

Navigation