Skip to main content
Log in

Explaining the \( t\overline t \) forward-backward asymmetry without dijet or flavor anomalies

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider new physics explanations of the anomaly in the \( t\overline t \) forward-backward asymmetry measured at the Tevatron, in the context of flavor conserving models. The recently measured LHC dijet distributions strongly constrain many otherwise viable models. A new scalar particle in the \( \overline 3 \) representation of flavor and color can fit the \( t\overline t \) asymmetry and cross section data at the Tevatron and avoid both low-and high-energy bounds from flavor physics and the LHC. An s-channel resonance in uc → uc scattering at the LHC is predicted to be not far from the current sensitivity. This model also predicts rich top quark physics for the early LHC from decays of the new scalar particles. Single production gives \( t\overline t j \) signatures with high p jet T and pair production leads to \( t\overline t jj \) and 4 jet final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\overline p \) Collisions at sqrts =1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    Article  ADS  Google Scholar 

  2. CDF collaboration, Measurement of the Forward-Backward Asymmetry in \( p\overline p \) Production in 3.2 fb 1 of \( p\overline p \) Collisions at \( \sqrt {s} = 1.96 \) TeV, CDF note 9724, http://www-cdf.fnal.gov/physics/new/top/2009/tprop/Afb/cdfnote_9724_public_v01.pdf.

  3. D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    Article  ADS  Google Scholar 

  4. O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  5. M.T. Bowen, S.D. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [SPIRES].

    ADS  Google Scholar 

  6. J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].

    ADS  Google Scholar 

  7. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].

    ADS  Google Scholar 

  8. CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, arXiv:1101.0034 [SPIRES].

  9. DØ collaboration, Measurement of the forward-backward production asymmetry of t and \( \overline t \) quarks in \( p\overline p \to tbart \) events, DO Note 6062-CONF, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/TOP/T90/T90.pdf.

  10. CDF collaboration, Measurement of the Forward Backward Asymmetry in Top Pair Production in the Dilepton Decay Channel using 5.1 fb −1, CDF Note 10398, http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/.

  11. CDF collaboration, Search for Boosted Top Quarks in High Transverse Momentum Jets with 5.95 fb −1 of CDF Run II Data, CDF Note 10234, http://www-cdf.fnal.gov/physics/new/top/2010/tprop/BoostedTops/.

  12. S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].

    ADS  Google Scholar 

  13. P.H. Frampton, J. Shu and K. Wang, Axigluon as Possible Explanation for \( p\overline p \to t\overline t \) Forward-Backward Asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    Article  ADS  Google Scholar 

  14. J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].

    ADS  Google Scholar 

  15. A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].

    ADS  Google Scholar 

  16. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  17. G. Burdman, L. de Lima and R.D. Matheus, New Strongly Coupled Sector at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 035012 [arXiv:1011.6380] [SPIRES].

    ADS  Google Scholar 

  18. K. Cheung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [SPIRES].

    ADS  Google Scholar 

  19. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].

    Article  ADS  Google Scholar 

  20. J. Shelton and K.M. Zurek, A Theory for Maximal Flavor Violation, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [SPIRES].

    ADS  Google Scholar 

  21. K. Blum et al., Implications of the CDF \( t\overline t \) Forward-Backward Asymmetry for Boosted Top Physics, arXiv:1102.3133 [SPIRES].

  22. B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in t anti-t production from flavour symmetries, arXiv:1102.3374 [SPIRES].

  23. C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].

    Article  ADS  Google Scholar 

  24. D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].

    ADS  Google Scholar 

  25. D.-w. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model-independent analysis of forward-backward asymmetry of top quark production at the Tevatron, arXiv:1012.0102 [SPIRES].

  26. C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [SPIRES].

    ADS  Google Scholar 

  27. J.M. Arnold, M. Pospelov, M. Trott and M.B. Wise, Scalar Representations and Minimal Flavor Violation, JHEP 01 (2010) 073 [arXiv:0911.2225] [SPIRES].

    Article  ADS  Google Scholar 

  28. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [SPIRES].

    ADS  Google Scholar 

  29. CDF collaboration, Search for Quark Substructure in the angular distribution of dijets produced in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, CDF Note 9609, http://www-cdf.fnal.gov/physics/new/qcd/dijetchi_08/.

  30. D0 collaboration, V.M. Abazov et al., Measurement of dijet angular distributions at \( \sqrt {s} = 1.96 \) TeV and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803 [arXiv:0906.4819] [SPIRES].

    Article  ADS  Google Scholar 

  31. UA1 collaboration, G. Arnison et al., Angular Distributions for High Mass Jet Pairs and a Limit on the Energy Scale of Compositeness for Quarks from the CERN \( p\overline p \) Collider, Phys. Lett. B 177 (1986) 244 [SPIRES].

    ADS  Google Scholar 

  32. UA2 collaboration, J. Alitti et al., Inclusive jet cross-section and a search for quark compositeness at the CERN \( \overline p p \) collider, Phys. Lett. B 257 (1991) 232 [SPIRES].

    ADS  Google Scholar 

  33. CMS collaboration, V. Khachatryan et al., Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at 7TeV, Phys. Rev. Lett. 106 (2011) 201804 [arXiv:1102.2020] [SPIRES].

    Article  ADS  Google Scholar 

  34. CMS collaboration, V. Khachatryan et al., Search for Dijet Resonances in 7TeV pp Collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [arXiv:1010. 0203] [SPIRES].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, G. Aad et al., Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at \( \sqrt {s} = 7 \) TeV Measured with the ATLAS Detector, Phys. Lett. B 694 (2011) 327 [arXiv:1009.5069] [SPIRES].

    ADS  Google Scholar 

  36. ATLAS collaboration, G. Aad et al., Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at \( \sqrt {s} = 7 \) TeV Measured with the ATLAS Detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [SPIRES].

    Article  ADS  Google Scholar 

  37. CDF collaboration, Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF Note 9913, http://www-cdf.fnal.gov/physics/new/top/confNotes/cdf9913_ttbarxs4invfb.ps.

  38. CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\overline t \) Differential Cross Section \( {{{d\sigma }} \left/ {{d{M_{t\overline t }}}} \right.} \) in \( p\overline p \) Collisions at TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].

    Article  ADS  Google Scholar 

  39. M.J. Strassler, A Note on Measuring Charm and Bottom Forward-Backward Asymmetries at the Tevatron, arXiv:1102.0736 [SPIRES].

  40. S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [SPIRES].

    ADS  Google Scholar 

  41. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].

    Article  ADS  Google Scholar 

  42. N. Kidonakis and R. Vogt, The Theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].

    ADS  Google Scholar 

  43. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:003.5827] [SPIRES].

    Article  ADS  Google Scholar 

  44. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, RG-improved single-particle inclusive cross sections and forward-backward asymmetry in \( t\overline t \) production at hadron colliders, arXiv:1103.0550 [SPIRES].

  45. CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [SPIRES].

    Article  ADS  Google Scholar 

  46. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  47. M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for Top Flavor Violating Resonances, arXiv:1102.0018 [SPIRES].

  48. S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].

    Article  ADS  Google Scholar 

  49. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Alioli, NLO top anti-top pair production plus one jet matched with shower in POWHEG, talk at the Heavy Particles at the LHC Workshop, Zurich Switzerland, 5–7 January 2011, http://indico.cern.ch/conferenceTimeTable.py?confId=107167#all.

  51. A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, arXiv:1101.2672 [SPIRES].

  52. C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF \( t\overline t \) Forward-Backward Asymmetry for Hard Top Physics, arXiv:1103.2297 [SPIRES].

  53. J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline t \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmaltz.

Additional information

ArXiv ePrint:1103.2757

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligeti, Z., Tavares, G.M. & Schmaltz, M. Explaining the \( t\overline t \) forward-backward asymmetry without dijet or flavor anomalies. J. High Energ. Phys. 2011, 109 (2011). https://doi.org/10.1007/JHEP06(2011)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)109

Keywords

Navigation