Skip to main content
Log in

Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) byMucor indicus MTCC 6333: Purification and characterization of phytase

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The production of phytase and associated feed enzymes (phosphatase, xylanase, CMCase, α-amylase and β-glucosidase) was determined in a thermotolerant fungusMucor indicus MTCC 6333, isolated from composting soil. Solid-substrate culturing on wheat bran and optimizing other culture conditions (C and N sources, level of N, temperature, pH, culture age, inoculum level), increased the yield of phytase from 266±0.2 to 513±0.4 nkat/g substrate dry mass. The culture extract also contained 112, 194, 171, 396, and 333 nkat/g substrate of phosphatase, xylanase, CMCase, β-glucosidase and α-amylase activities, respectively. Simple 2-step purification employing anion exchange and gel filtration chromatography resulted in 21.9-fold purified phytase. The optimum pH and temperature were pH 6.0 and 70 °C, respectively. The phytase was thermostable under acidic conditions, showing 82 % residual activity after exposure to 60 °C at pH 3.0 and 5.0 for 2 h, and displayed broad substrate specificity. TheK m was 200 nmol/L andv lim of 113 nmol/s per mg protein with dodecasodium phytate as substrate.In vitro feed trial with feed enzyme resulted in the release of 1.68 g inorganic P/kg of feed after 6 h of incubation at 37 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMS:

dry mass substrate

Pi :

inorganic phosphorus

NSP:

non-starch polysaccharides

DSP:

dodecasodium phytate

PSM:

phytase screening medium

MTCC:

Microbial Type Culture Collection

SSF:

solid state fermentation

PHY:

phytase(s); 3-phytase (EC 3.1.3.8) 4-phytase (EC 3.1.3.26)

References

  • Bogar B., Szakacs G., Pandey A., Abdulhameed S., Linden J.C., Tengerdy R.P.: Optimization of phytase production by solid state fermentation.J.Ind.Microbiol.Biotechnol. 30, 183–189 (2003).

    PubMed  CAS  Google Scholar 

  • Casey A., Walsh G.: Purification and characterization of extracellular phytase fromAspergillus niger ATCC 9142.Biores.Technol. 86, 183–188 (2003).

    Article  CAS  Google Scholar 

  • Čepeljnik T., Rincón M.T., Flint H.J., Marinšek-Logar R.: Xyn11A, a multidomain multicatalytic enzyme fromPseudobutyrivibrio xylanivorans Mz5T.Folia Microbiol. 51, 263–267 (2006).

    Article  Google Scholar 

  • Chadha B.S., Gulati H.K., Minhas M., Saini H.S., Singh N.: Phytase production by thermophilic fungusRhizomucor pusillus.World J.Microbiol.Biotechnol. 20, 105–109 (2004.)

    Article  CAS  Google Scholar 

  • Chelius M.K., Wodzinski R.J.: Strain improvement ofAspergillus niger for phytase production.Appl.Microbiol.Biotechnol. 41, 79–83 (1994).

    Article  CAS  Google Scholar 

  • Choi Y.M., Suh H.J., Kim J.M.: Purification and properties of extracellular phytase fromBacillus sp. KHU-10.J.Prot.Chem. 20, 287–292 (2001).

    Article  CAS  Google Scholar 

  • Gargova S., Roshkova Z., Vancheva G.: Screening of fungi for phytase production.Biotechnol.Tech. 11, 221–224 (1997).

    Article  CAS  Google Scholar 

  • Gargova S., Sariyska M., Angelov A., Stoilova I.:Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate.Folia Microbiol. 51, 541–545 (2006).

    Article  CAS  Google Scholar 

  • Greiner R., Konietzny U., Jany D.: Purification and characterization of two phytases fromEscherichia coli.Arch.Biochem.Biophys. 303, 107–113 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Gulati H.K., Chadha B.S., Saini H.S.: Production and characterization of thermostable alkaline phytase fromBacillus laevolacticus isolated from rhizosphere soil.J.Ind.Microbiol.Biotechnol. 34, 91–98 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Howson S.G., Davis R.P.: Production of phytate hydrolyzing enzyme by some fungi.Enzyme Microbiol.Technol. 5, 377–382 (1983).

    Article  CAS  Google Scholar 

  • Jareonkitmongkol S., Ohya M., Watanbe R., Takagi H., Nakamori S.: Partial purification from a soil isolates bacterium,Klebsiella oxytoca MO-3.J.Ferment.Bioeng. 83, 393–394 (1997).

    Article  CAS  Google Scholar 

  • Kim Y.O., Kim H.K., Bae K.S., Yu J.H., Oh T.K.: Purification and properties of thermostable phytase fromBacillus sp. DSII.Enzyme Microbiol.Technol. 22, 2–7 (1998).

    Article  CAS  Google Scholar 

  • Konietzny U., Greiner R.: Bacterial phytase: potential application,in vivo function and regulation of its synthesis.Brazil.J.Microbiol. 35, 11–18 (2004).

    CAS  Google Scholar 

  • Krishna C.: Solid-state fermentation system — overview.Crit.Rev.Biotechnol. 25, 1–30 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Krishna C., Nokes S.E.: Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology.J.Ind.Microbiol.Biotechnol. 26, 161–170 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lei X.G., Porres J.M.: Phytase enzymology, application, and biotechnology.Biotechnol.Lett. 25, 1787–1794 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal.Chem. 31, 426–428 (1959).

    Article  CAS  Google Scholar 

  • Mitchell D.B., Vogel K., Weimann B.J., Pasamontes L., Van Loon A.P.G.M.: The phytase subfamily of histidine acid phosphatase: isolation of genes for two novel phytases from the fungiAspergillus terreus andMyceliophthora thermophila.Microbiology 143, 245–252 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Nampoothiri K.M., Tomes G.J., Roopesh K., Szakacs G., Nagy V., Soccol C.R., Pandey A.: Thermostable phytase production byThermoascus aurantiacus in submerged fermentation.Appl.Biochem.Biotechnol. 118, 205–214 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Omogbenigun F.O., Nyachoti C.M., Slominski B.A.: Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs.J.Anim.Sci. 82, 1053–1061 (2004).

    PubMed  CAS  Google Scholar 

  • Pandey A., Szakacs G., Soccol C.R., Rodriguez-Leon J.A., Soccol V.T.: Production, purification and properties of microbial phytases.Biores.Technol. 77, 203–214 (2001).

    Article  CAS  Google Scholar 

  • Papagianni M., Nokes S.E., Filer K.: Submerged and solid-state phytase fermentation byAspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance.Food Technol.Biotechnol. 39, 319–326 (2001).

    CAS  Google Scholar 

  • Reddy N.R., Plerson M.D., Sathe K., Salunkhe D.K.:Phytates in Cereals and Legumes. CRC Press, Boca Raton (FL) 1989.

    Google Scholar 

  • Sabu A., Sarita S., Pandey A., Bogar B., Szakacs G., Soccol C.R.: Solid-state fermentation for production of phytase byRhizopus oligosporus.Appl.Biochem.Biotechnol. 102–103, 251–260 (2002).

    Article  PubMed  Google Scholar 

  • Sheih T.R., Ware J.H.: Survey of microorganisms for the production of extraceullar phytase.Appl.Microbiol. 16, 1348–1351 (1968).

    Google Scholar 

  • Sirotek K., Marounek M., Suchorská O.: Activity and cellular localization of amylases of rabbit cecal bacteria.Folia Microbiol. 51, 309–312 (2006).

    Article  CAS  Google Scholar 

  • Smits J.P., Rinzema A., Tramper J., Van Sonsbeek H.M., Knoll W.: Solid-state fermentation of wheat bran byTrichoderma reesei QM 9414: substrate composition changes, C balance, enzyme production, growth and kinetics.Appl.Microbiol.Biotechnol. 46, 489–496 (1996).

    Article  CAS  Google Scholar 

  • Tomaschy A.: Engineering of phytase for improved activity at low pH.Appl.Environ.Microbiol. 68, 1907–1913 (2002).

    Article  CAS  Google Scholar 

  • Wu Y.B., Ravindran V., Thomas D.G., Birtles M.J., Hendricks W.H.: Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus.Brit.Poultry Sci. 45, 76–84 (2004).

    Article  CAS  Google Scholar 

  • Wyss M., Brugger R., Kronenberger A., Remy R., Fimbel R., Oesterhelt G., Lehmann M., Van Loon A.P.G.M.: Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytica properties.Appl.Environ.Microbiol. 65, 367–373 (1999).

    PubMed  CAS  Google Scholar 

  • Yin Q.Q., Zheng Q.H., Kang X.T.: Biochemical characterization of phytases from fungi and the transformed microorganism.Anim.Feed Sci.Technol. 132, 431–350 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Chadha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulati, H.K., Chadha, B.S. & Saini, H.S. Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) byMucor indicus MTCC 6333: Purification and characterization of phytase. Folia Microbiol 52, 491–497 (2007). https://doi.org/10.1007/BF02932109

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932109

Keywords

Navigation