Skip to main content
Log in

Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: A review of the evidence

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A brief review is given of the evidence supporting the “hydrogen model” of interface trap generation in silicon-based MOS structures. Emphasis is placed on the importance of electron spin resonance (ESR) in identifying and quantifying certain crucial defect species, including atomic hydrogen, self-trapped holes, and the interface trap itself — theP b center. Three types of experiments are considered: (1) low-temperature irradiation and isochronal anneals, (2) pulse radiolysis at room temperature, and (3) exposure of previously-irradiated devices to hydrogen gas. These disparate types of data are all reasonably accounted for by a unified model involving the production of H+ and/or H0 species in the oxide which subsequently drift to the interface where they react with hydrogen-passivated dangling bonds to formP b centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. H. Poindexter and P. J. Caplan, Prog. Surf. Sci.14, 201 (1983).

    Article  CAS  Google Scholar 

  2. P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys.54, 1457 (1983).

    Article  CAS  Google Scholar 

  3. P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys.55, 3495 (1984).

    Article  CAS  Google Scholar 

  4. R. H. Silsbee, J. Appl. Phys.32, 1459 (1961).

    Article  CAS  Google Scholar 

  5. D. L. Griscom, in Glass: Science and Technology Vol. 4B, eds. D. R. Uhlmann and N. J. Kreidl (Academic Press, Boston, 1990), p. 151.

    Google Scholar 

  6. F. B. McLean, IEEE Trans. Nucl. Sci.NS-27, 1651 (1980).

    Article  Google Scholar 

  7. G. J. Hu and W. C. Johnson, J. Appl. Phys.54, 1441 (1983).

    Article  CAS  Google Scholar 

  8. N. S. Saks, R. B. Klein, and D. L. Griscom, IEEE Trans. Nucl. Sci.NS-35, 1234 (1988).

    Article  Google Scholar 

  9. N. S. Saks, R. B. Klein, S. Yoon and D. L. Griscom, J. Appl. Phys.70, 7434 (1991).

    Article  CAS  Google Scholar 

  10. R. A. Weeks and M. M. Abraham, J. Chem. Phys.42, 68 (1965).

    Article  CAS  Google Scholar 

  11. D. L. Griscom, Phys. Rev. B40, 4224 (1989).

    Article  CAS  Google Scholar 

  12. D. L. Griscom, J. Non-Cryst. Solids (in press), 1992.

  13. K. L. Brower, P. M. Lenahan and P. V. Dressendorfer, Appl. Phys. Lett.41, 251 (1982).

    Article  CAS  Google Scholar 

  14. E. Harari, S. Wang, and B. S. H. Royce, J. Appl. Phys.46, 1310 (1975).

    Article  CAS  Google Scholar 

  15. T. E. Tsai, D. L. Griscom and E. J. Friebele, Phys. Rev. B40, 6374 (1989).

    Article  CAS  Google Scholar 

  16. D. L. Griscom, J. Appl. Phys.58, 2524 (1985).

    Article  CAS  Google Scholar 

  17. D. L. Griscom, D. B. Brown, and N. S. Saks, in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, eds. C. R. Helms and B. E. Deal (Plenum Publishing Corp., New York, 1988), p. 287.

    Google Scholar 

  18. A. G. Revesz, J. Electrochem. Soc.126, 122 (1979).

    Article  CAS  Google Scholar 

  19. K. L. Brower, Phys. Rev. B38, 9657 (1988).

    Article  CAS  Google Scholar 

  20. K. L. Brower, Phys. Rev. B42, 3444 (1990).

    Article  CAS  Google Scholar 

  21. K. L. Brower and S. M. Myers, Appl. Phys. Lett.57, 162 (1990).

    Article  CAS  Google Scholar 

  22. CRC Handbook of Chemistry and Physics, ed. R. C. Weast (CRC, Boca Raton, FL, 1980), p. F-225

    Google Scholar 

  23. N. Azuma, T. Miyazaki, K. Fueki, I. Sakaguchi and S.-I. Hirano, J. Am. Ceram. Soc.69, 19 (1986).

    Article  CAS  Google Scholar 

  24. N. S. Saks and D. B. Brown, IEEE Trans Nucl. Sci.36, 1848 (1989).

    Article  CAS  Google Scholar 

  25. N. S. Saks and D. B. Brown, IEEE Trans. Nucl. Sci.37,1624 (1990).

    Article  CAS  Google Scholar 

  26. D. B. Brown and N. S. Saks, J. Appl. Phys.70, 3734 (1991).

    Article  CAS  Google Scholar 

  27. F. J. Feigl, R. Gale, H. Chew, C. W. Magee and D. R. Young, Nucl. Instruments & MethodsB1, 348 (1984).

    Article  Google Scholar 

  28. F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai and J. Calise, J. Appl. Phys.52, 5665 (1981).

    Article  CAS  Google Scholar 

  29. R. A. Kohler, R. A. Kushner and K. H. Lee, IEEE Trans. Nucl. Sci.NS-35, 1492 (1988).

    Article  Google Scholar 

  30. R. E. Stahlbush, B. J. Mrstik and R. K. Lawrence, IEEE Trans. Nucl. Sci.NS-37, 1641 (1990).

    Article  Google Scholar 

  31. R. E. Stahlbush, A. H. Edwards, D. L. Griscom and B. J. Mrstik, J. Appl. Phys. (submitted).

  32. R. E. Stahlbush and A. H. Edwards, in The Physics and Chemistry of SiO2 and the Si/SiO2 Interface, eds. C. R. Helms and B. E. Deal (submitted), 1992.

  33. D. L. Griscom, C. J. Brinker, and R. A. B. Devine, (to be published).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griscom, D.L. Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: A review of the evidence. J. Electron. Mater. 21, 763–767 (1992). https://doi.org/10.1007/BF02655608

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655608

Key words

Navigation