Skip to main content
Log in

Topological and phenomenological classification of bursting oscillations

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe a classification scheme for bursting oscillations which encompasses many of those found in the literature on bursting in excitable media. This is an extension of the scheme of Rinzel (inMathematical Topics in Population Biology, Springer, Berlin, 1987), put in the context of a sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to describe the phenomenological character of different types of bursting, addressing the issue of how well the bursting can be characterized given the limited amount of information often available in experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alving, B. 1968. Spontaneous activity in isolated somata of Aplysia pacemaker neurons.J. Gen. Physiol. 51, 29–45.

    Article  Google Scholar 

  • Ashcroft, F. and P. Rorsman. 1989. Electrophysiology of the pancreatic β-cell.Prog. Biophys. molec. Biol. 54, 87–143.

    Article  Google Scholar 

  • Av-Ron, E., H. Parnas and L. Segel. 1993. A basic biophysical model for bursting neurons.Biol. Cybern. 69, 87–95.

    Article  Google Scholar 

  • Baer, S. M., T. Erneux and J. Rinzel. 1989. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance.SIAM J. Appl. Math. 49, 55–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Bertram, R. 1993. A computational study of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 69, 257–267.

    Article  MATH  Google Scholar 

  • Bertram, R. 1994. Reduced-system analysis of the effects of serotonin on a molluscan burster neuron.Biol. Cybern. 70, 359–368.

    MATH  Google Scholar 

  • Canavier, C. C., J. W. Clark and J. H. Byrne. 1991. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters.J. Neurophysiol. 66, 2107–2124.

    Google Scholar 

  • Canavier, C. C., D. A. Baxter, J. W. Clark and J. H. Byrne. 1993. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity.J. Neurophysiol. 69, 2252–2257.

    Google Scholar 

  • Chay, T. R. and D. L. Cook. 1988. Endogenous bursting patterns in excitable cells.Math. Biosci. 90, 139–153.

    Article  MathSciNet  Google Scholar 

  • Crunelli, V., J. S. Kelly, N. Leresche and M. Pirchio. 1987. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro.J. Physiol. 384, 587–601.

    Google Scholar 

  • Dean, P. M. and E. K. Matthews. 1970. Glucose-induced electrical activity in pancreatic islet cells.J. Physiol. 210, 255–264.

    Google Scholar 

  • Deschênes, M., J. P. Roy and M. Steriade. 1982. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization.Brain Res. 239, 289–293.

    Article  Google Scholar 

  • Doedel, E. 1981. Auto: A program for the automatic bifurcation analysis of autonomous systems.Cong. Num. 30, 265–284.

    MATH  MathSciNet  Google Scholar 

  • Dumortier, F., R. Roussarie and J. Sotomayor. 1991. Generic 3-parameter families of planar vector fields, unfoldings of saddle, focus and elliptic singularities with nilpotent linear parts. InBifurcations of Planar Vector Fields: Nilpotent Singularites and Abelian Integrals, F. Dumortier, R. Roussarie, J. Sotomayor and H. Żoŀadek (Eds), Lecture Notes in Mathematics, Vol. 1480, pp. 1–164. Berlin: Springer.

    Google Scholar 

  • Ermentrout, G. B. and N. Kopell. 1986. Parabolic bursting in an excitable system coupled with a slow oscillation.SIAM J. Appl. Math. 46, 233–253.

    Article  MATH  MathSciNet  Google Scholar 

  • FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane.Biophys. J. 1, 445–466.

    Google Scholar 

  • Gear, C. 1967. The numerical integration of ordinary differential equations.Math. Comp. 21, 146–156.

    Article  MATH  MathSciNet  Google Scholar 

  • Guckenheimer, J. 1986. Multiple bifurcation problems for chemical reactions.Physica 20D, 1–20.

    MathSciNet  Google Scholar 

  • Guckenheimer, J. and P. Holmes. 1983.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, pp. 353–423. Berlin: Springer.

    MATH  Google Scholar 

  • Guckenheimer, J., S. Gueron and R. M. Harris-Warrick. 1993. Mapping the dynamics of a bursting neuron.Phil. Trans. Roy. Soc. Lond. 341, 345–359.

    Google Scholar 

  • Harris-Warrick, R. M. and R. E. Flamm. 1987. Multiple mechanisms of bursting in a conditional bursting neuron.J. Neurosci. 7, 2113–2128.

    Google Scholar 

  • Hindmarsh, A. 1974. An ordinary differential equation solver. Technical report UCID-30001, Lawrence Livermore Laboratory.

  • Hindmarsh, J. L. and R. M. Rose. 1984. A model of neuronal bursting using three coupled first order differential equations.Proc. R. Soc. Lond. B 221, 87–102.

    Article  Google Scholar 

  • Hudson, J. L., M. Hart and D. Marinko. 1979. An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction.J. Chem. Phys. 71, 1601–1606.

    Article  Google Scholar 

  • Johnson, S. W., V. Seutin and R. A. North. 1992. Burst firing in dopamine neurons induced by N-Methyl-D-Aspartate: role of electrogenic sodium pump.Science 258, 665–667.

    Google Scholar 

  • Pernarowski, M. 1994. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting.SIAM J. Appl. Math. 54, 814–832.

    Article  MATH  MathSciNet  Google Scholar 

  • Plant, R. E. and M. Kim. 1976. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations.Biophys. J. 16, 227–244.

    Article  Google Scholar 

  • Rinzel, J. 1985. Bursting oscillation in an excitable membrane model. InOrdinary and Partial Differential Equations, B. D. Sleeman and R. J. Jarvis (Eds), Lecture Notes in Mathematics, Vol. 1151, pp. 304–316. Berlin: Springer.

    Google Scholar 

  • Rinzel, J. 1987. A formal classification of bursting mechanisms in excitable systems. InMathematical Topics in Population Biology, Morphogenesis and Neurosciences, E. Teramoto and M. Yamaguti (Eds), Lecture Notes in Biomathematics, Vol. 71, pp. 267–281. Berlin: Springer.

    Google Scholar 

  • Rinzel, J. and Y. S. Lee. 1987. Dissection of a model for neuronal parabolic bursting.J. Math. Biol. 25, 653–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel, J. and W. C. Troy. 1982. Bursting phenomena in a simplified Oregonator flow system model.J. Chem. Phys. 76, 1775–1789.

    Article  MathSciNet  Google Scholar 

  • Rush, M. E. and J. Rinzel. 1994. Analysis of bursting in a thalamic neuron model.Biol. Cybern. 71, 281–291.

    MATH  Google Scholar 

  • Schecter, S. 1987. The saddle node separatrix loop.SIAM J. Math. Anal. 18, 1142–1156.

    Article  MATH  MathSciNet  Google Scholar 

  • Sherman, A. and J. Rinzel. 1992. Rhythmogenic effects of weak electrotonic coupling in neuronal models.Proc. Natl. Acad. Sci. USA 89, 2471–2474.

    Article  Google Scholar 

  • Smolen, P. and J. Keizer. 1992. Slow voltage inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic beta-cell.J. Membrane. Biol. 127, 9–19.

    Article  Google Scholar 

  • Smolen, P. and A. Sherman. 1994. Phase-independent resetting in relaxation and bursting oscillators.J. Theor. Biol. 169, 339–348.

    Article  Google Scholar 

  • Strumwasser, F. 1967. Types of information stored in single neurons. InInvertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology, C. A. G. Wiersma (Ed.), pp. 290–319. Chicago: The University of Chicago Press.

    Google Scholar 

  • Traub, R. D., R. K. S. Wong, R. Miles and H. Michelson. 1991. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.J. Neurophysiol. 66, 635–650.

    Google Scholar 

  • Wang, X.-J. and J. Rinzel. 1994. Oscillatory and bursting properties of neurons. InThe Handbook of Brain Theory and Neural Networks, M. A. Arbib (Ed.). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Wang, X.-J., J. Rinzel and M. A. Rogawski. 1991. A model of the T-type calcium current and the low-threshold spikes in the thalamic neurons.J. Neurophysiol. 66, 839–850.

    Google Scholar 

  • Wong, R. K. S. and D. A. Prince. 1981. Afterpotential generation in hippocampal pyramidal cells.J. Neurophysiol. 45, 86–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, R., Butte, M.J., Kiemel, T. et al. Topological and phenomenological classification of bursting oscillations. Bltn Mathcal Biology 57, 413–439 (1995). https://doi.org/10.1007/BF02460633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460633

Keywords

Navigation