Skip to main content
Log in

Volume, pH, and ion-content regulation in human red cells: Analysis of transient behavior with an integrated model

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A basic mathematical model of human red cells is presented which integrates the charge and nonideal osmotic behavior of hemoglobin and of other impermeant cell solutes with the ion transport properties of the red cell membrane. The computing strategy was designed to predict the behavior of all measurable variables in time in ways that optimize comparison with experimentally determined behavior. The need and applications of such a model are illustrated in three separate examples covering different areas of experimentation in the physiology and pathophysiology of red cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adair, G.S. 1929. Thermodynamic analysis of the observed osmotic pressures of protein salts in solutions of finite concentration.Proc. R. Soc. London A 126:16–24

    Google Scholar 

  2. Beauge, L., Lew, V.L. 1977. Passive fluxes of sodium and potassium across red cell membranes.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors, pp. 39–51. Academic. New York

    Google Scholar 

  3. Bookchin, R.M., Lew, V.L. 1983. Red cell membrane abnormalities in sickle cell anemia.In: Progress in Hematology. Vol. 13. Elmer B. Brown, editor. Grune & Stratton, New York

    Google Scholar 

  4. Bookchin, R.M., Lew, D.J., Balazs, T., Ueda, Y., Lew, V.L. 1984. Dehydration and delayed proton equilibria of red blood cells suspended in isosmotic phosphate buffers.J. Lab. Clin. Med. 104:855–866

    PubMed  Google Scholar 

  5. Brewer, G.J., Oelshlegel, F.J., Jr., Schoomaker, E.B., Knutsen, C.A. 1972. Potential effects of hemoglobin concentration on red cell metabolism together with observations on red cell metabolic differences between men and women.In: Hemoglobin and Red Cell Structure and Function. C.J. Brewer, editor. pp. 99–119. Plenum, New York/London

    Google Scholar 

  6. Brugnara, C., Kopin, A.S., Brunn, H.F., Tosteson, D.C. 1984. Electrolyte composition and equilibrium in hemoglobin CC red blood cells.Trans. Assoc. Am. Physicians 97:104–112

    PubMed  Google Scholar 

  7. Brugnara, C., Kopin, A.S., Bunn, H.F., Tosteson, D.C. 1985. Regulation of cation content and cell volume in hemoglobin erythrocytes from patients with homozygous hemoglobin C disease.J. Clin. Invest. 75:1608–1617

    PubMed  Google Scholar 

  8. Brumen, M., Glaser, R., Svetina, S. 1979. Osmotic states of the red blood cell.Bioelectrochem. Bioenerg. 6:227–241

    Google Scholar 

  9. Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell.Biochim. Biophys. Acta 515:239–302

    PubMed  Google Scholar 

  10. Cala, P.M. 1980. Volume regulation byAmphiuma red blood cells: The membrane potential and its implications regarding the nature of the ion-flux pathways.J. Gen. Physiol. 76:683–708

    PubMed  Google Scholar 

  11. Cala, P.M. 1983. Volume regulation by red blood cells: Mechanisms of ion transport.Mol. Physiol. 4:33–52

    Google Scholar 

  12. Cala, P.M. 1983. Cell volume regulation byAmphiuma red blood cells.J. Gen. Physiol. 82:761–784

    PubMed  Google Scholar 

  13. Canessa, M., Brugnara, C., Cusi, D., Tosteson, D.C. 1986. Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells.J. Gen. Physiol. 87:113–142

    PubMed  Google Scholar 

  14. Cass, A., Dalmark, M. 1973. Equilibrium dialysis of ions in nystatin-treated cells.Nature New Biol. 244:47–49

    PubMed  Google Scholar 

  15. Cavieres, J.D. 1977. The sodium pump in human red cells.In: Membrane transport in red cells. J.C. Ellory and V.L. Lew, editors. pp. 1–37. Academic, New York

    Google Scholar 

  16. Clark, M.R., Guatelli, J.C., White, A.T., Shohet, S.B. 1981. Study on the dehydrating effect of the red cell Na+/K+-pump in nystatin-treated cells with varying Na+ and water contents.Biochim. Biophys. Acta 646:422–432

    PubMed  Google Scholar 

  17. Dagher, G., Brugnara, C., Canessa, M. 1985. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.J. Membrane Biol. 86:145–155

    Google Scholar 

  18. Dalmark, M. 1975. Chloride and water distribution in human red cells.J. Physiol. (London) 250:65–84

    Google Scholar 

  19. Dick, D.A.T. 1959. Osmotic properties of living cells.Int. Rev. Cytol. 8:387–448

    PubMed  Google Scholar 

  20. Dick, D.A.T., Lowenstein, L.M. 1958. Osmotic equilibria in human erythrocytes studied by immersion refractometry.Proc. R. Soc. London B 148:241–256

    Google Scholar 

  21. Elbaum, D., Nagel, R.L., Bookchin, R.M., Herskovitz, T.T. 1974. Effect of alkylinease on the polymerization of hemoglobin S.Proc. Natl. Acad. Sci. USA 71:4718

    PubMed  Google Scholar 

  22. Ellory, J.C., Dunham, P.B., Logue, P.J. 1982. Anion-dependent cation transport in erythrocytes.Phil. Trans. R. Soc. London B 299:483–495

    Google Scholar 

  23. Flatman, P.W. 1983. Sodium and potassium transport in ferret red cells.J. Physiol. (London) 341:545–557

    Google Scholar 

  24. Flatman, P.W., Lew, V.L. 1980. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.J. Physiol. (London) 305:13–30

    Google Scholar 

  25. Fortes, P.A.G. 1977. Anion movements in red blood cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 175–195. Academic, New York

    Google Scholar 

  26. Freedman, J.C. 1983. Partial requirements forin vitro survival of human red blood cells.J. Membrane Biol. 75:225–231

    Google Scholar 

  27. Freedman, J.C., Hoffman, J.F. 1979. Ionic and osmotic equilibria of human red blood cells treated with nystatin.J. Gen. Physiol. 74:157–185

    PubMed  Google Scholar 

  28. Freedman, J.C., Hoffman, J.F. 1979. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria.J. Gen. Physiol. 74:187–212

    PubMed  Google Scholar 

  29. Frumento, A.S. 1965. The electrical effects of an ionic pump.J. Theor. Biol. 9:253–262

    PubMed  Google Scholar 

  30. Funder, J., Wieth, J.O. 1966. Chloride and hydrogen ion distribution between human red cells and plasma.Acta Physiol. Scand. 68:234–235

    Google Scholar 

  31. Gary-Bobo, C.M., Solomon, A.K. 1968. Properties of hemoglobin solutions in red cells.J. Gen. Physiol. 52:825–853

    PubMed  Google Scholar 

  32. Gary-Bobo, C.M., Solomon, A.K. 1971. Hemoglobin charge dependence on hemoglobin concentrationin vitro.J. Gen. Physiol. 57:283–289

    PubMed  Google Scholar 

  33. Glader, B.E., Nathan, D.G. 1978. Cation permeability alterations during sickling: Relation to cation composition and cellular hydration of irreversibly sickled cells.Blood 51:983–989

    PubMed  Google Scholar 

  34. Glynn, I.M. 1985. The Na+, K+-transporting adenosine triphosphatase.In: The Enzymes of Biological Membranes. A.N. Martonosi, editor. pp. 35–114. Plenum, New York/London

    Google Scholar 

  35. Glynn, I.M., Warner, A.E. 1972. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antioarrhythmic effect.Br. J. Pharmacol. 44:271

    PubMed  Google Scholar 

  36. Haas, M., Schmidt, W.F., III., McManus, T.J. 1982. Catecholamine-stimulated ion transport in duck red cells.J. Gen. Physiol. 80:125–147

    PubMed  Google Scholar 

  37. Hall, A.C., Ellory, J.C. 1985. Measurements and stoichiometry of bumetanide-sensitive (2Na∶1K∶3Cl) cotransport in ferret red cells.J. Membrane Biol. 85:205–213

    Google Scholar 

  38. Hladky, S.B., Rink, T.J. 1977. pH equilibration across the red blood cell membrane.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 115–135. Academic, London

    Google Scholar 

  39. Hladky, S.B., Rink, T.J. 1978. Osmotic behaviour of human red blood cells: An interpretation in terms of negative intracellular fluid pressure.J. Physiol. (London) 274:437–446

    Google Scholar 

  40. Hoffman, J.F., Laris, P.C. 1974. Determinations of membrane potentials in human andAmphiuma red blood cells by means of a fluorescent probe.J. Physiol. (London) 239:519–552

    Google Scholar 

  41. Hoffman, J.F., Lassen, U.V. 1971. Plasma membrane potentials in amphibian red cells.Proc. Int. Union Physiol. Sci. 9:253(Abstr.)

    Google Scholar 

  42. Hunter, M.J. 1971. A quantitative estimate of the non-exchange restricted chloride permeability of the human red cell.J. Physiol. 218:49P

    Google Scholar 

  43. Hunter, M.J. 1977. Human erythrocyte anion permeabilities measured under conditions of net charge transfer.J. Physiol. (London) 268:35–49

    Google Scholar 

  44. Hviid-Larsen, E. 1978. Computed steady-state ion concentrations and volume of epithelial cells. Dependence on transcellular Na+ transport. Alfred Benzon Symposium, Vol. 11, pp. 438–456. Copenhagen, Munksgaard

    Google Scholar 

  45. Hviid-Larsen, E., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo).Acta Physiol. Scand. 102:1–21

    PubMed  Google Scholar 

  46. Imai, K. 1981. Measurement of accurate oxygen equilibrium curves by an automatic oxygenation apparatus.Methods Enzymol. 76:438

    PubMed  Google Scholar 

  47. Jacobs, M.H., Stewart, D.R. 1942. The role carbonic anhydrase in certain ionic exchanges involving the erythrocyte.J. Gen. Physiol. 25:539–552

    Google Scholar 

  48. Jacobs, M.H., Stewart, D.R. 1947. Osmotic properties of the erythrocyte. XII. Ionic and osmotic equilibria with a complex external solution.J. Cell. Comp. Physiol. 30:79–103

    Google Scholar 

  49. Kon, K., Maeda, N., Sekiya, M., Shiga, T., Suda, T. 1980. A method for studying oxygen diffusion barrier in erythrocytes: Effects of haemoglobin content and membrane cholesterol.J. Physiol. (London) 309:569

    Google Scholar 

  50. Kregenow, F.M. 1977. Transport in avian red cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 383–426. Academic, New York

    Google Scholar 

  51. Larsen, F.L., Katz, S., Roufogalis, B.D., Brooks, D.E. 1981. Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes.Nature (London) 294:667–668

    Google Scholar 

  52. Lassen, U.V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen affinity of hemoglobin and red cell acid base status. M. Rørth and P. Astrup, editors. pp. 291–304. Academic, New York

    Google Scholar 

  53. Lauf, P.K. 1985. K+∶Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  54. Lew, V.L., Beauge, L. 1979. Passive cation fluxes in red cell membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Springer-Verlag, Berlin

    Google Scholar 

  55. Lew, V.L., Ferreira, H.G., Moura, T. 1979. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.Proc. R. Soc. London B 206:53–83

    Google Scholar 

  56. Lew, V.L., Garcia-Sancho, J. 1985. Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells.Cell Calcium 6:15–23

    PubMed  Google Scholar 

  57. Lew, V.L., Maullem, S., Seymour, C.A. 1982. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes.Nature (London) 296:742–744

    Google Scholar 

  58. Lian, C.Y., Roth, S., Harkness, D.R. 1971. The effect of alteration of intracellular 2,3-DPG concentration upon oxygen binding of intact erythrocytes containing normal and mutant hemoglobins.Biochem. Biophys. Res. Commun. 45:151

    PubMed  Google Scholar 

  59. McConaghey, P.D., Maizels, M. 1961. The osmotic coefficients of haemoglobin in red cells under varying conditions.J. Physiol. (London) 155:28–45

    Google Scholar 

  60. Sarkadi, B., Gardos, G. 1985. Calcium-induced potassium transport in cell membranes.In: The Enzymes of Biological Membranes. A.N. Martonosi, editor. pp. 193–234. Plenum, New York/London

    Google Scholar 

  61. Savitz, D., Sidel, V.W., Solomon, A.K. 1964. Osmotic properties of human red cells.J. Gen. Physiol. 48:79–94

    PubMed  Google Scholar 

  62. Seakins, M., Gibbs, W.N., Milner, P.F., Bertles, J.F. 1973. Erythrocyte Hb−S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia.J. Clin. Invest. 52:422

    PubMed  Google Scholar 

  63. Simons, T.J.B. 1976. Carbo cyanine dyes inhibit Ca-dependent K efflux from human red cell ghosts.Nature (London) 264:467–469

    Google Scholar 

  64. Tosteson, D.C. 1964. Regulation of cell volume by sodium and potassium transport.In: The cellular functions of membrane transport. J.F. Hoffman, editor. pp. 3–22. Prentice Hall

  65. Tosteson, D.C., Hoffman, J.F. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. Gen. Physiol. 44:269–194

    PubMed  Google Scholar 

  66. Tosteson, D.C., Shea, E., Darling, R.C. 1952. Potassium and sodium of red blood cells in sickle cell anemia.J. Clin. Invest. 31:406–411

    PubMed  Google Scholar 

  67. Whittam, R. 1964.In: Transport and Diffusion in Red Blood Cells. pp. 76–96. Edward Arnold, London

    Google Scholar 

  68. Wieth, J.O. 1970. Effects of monovalent cations on sodium permeability of human red cells.Acta Physiol. Scand. 79:76–87

    PubMed  Google Scholar 

  69. Wiley, S.J., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, V.L., Bookchin, R.M. Volume, pH, and ion-content regulation in human red cells: Analysis of transient behavior with an integrated model. J. Membrain Biol. 92, 57–74 (1986). https://doi.org/10.1007/BF01869016

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869016

Key Words

Navigation