Skip to main content
Log in

Kinetics and mechanism of the copper(II) promoted hydrolysis of the methyl ester of ethylenediaminemonoacetate

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Base hydrolysis of methyl ethylenediaminemonoacetate has been studied at I=0.1 mol dm−3 (NaClO4) over the pH range 7.4–8.8 at 25 °C. The proton equilibria of the ligand can be represented by the equations,

where E is the free unprotonated ester species. Values of pK1 and pK2 are 4.69 andca. 7.5 at 25° (I=0.1 mol dm−3). For base hydrolysis of EH+, kOH=1.1×103 dm3 mol−1 s−1 at 25 °C. The species E is shown to undergo lactamisation to give 2-oxopiperazine (klact ca. 1×10−3 s−1) at 25 °C. Formation of the lactam is indicated both by u.v. measurements and by isolation and characterisation of the compound.

Base hydrolysis of the ester ligand in the complex [CuE]2+ has been studied over a range of pH and temperature, k 25OH =9.3×104 dm3 mol−1 s−1 with ΔH=107 kJ mol−1 and ΔS 298 =209 JK−1 mol−1. Base hydrolysis of [CuE]2+ is estimated to be some 1055 fold faster than that of the free ester ligand. The results suggest that base hydrolysis occursvia a chelate ester species in which the methoxycarbonyl group of the ligand is bonded to copper(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Hay and P. J. Morris in H. Sigal (Ed.),Metal Ions in Biological Systems, Vol. 5, Marcel Dekker, New York 1976.

    Google Scholar 

  2. N. E. Dixon and A. M. Sargeson in T. G. Spiro (Ed.),Zinc Enzymes, Wiley, New York, 1983.

    Google Scholar 

  3. D. A. Buckingham in A. W. Addison, W. R. Cullen, D. Dolphin and B. R. James (Eds.),Biological Aspects of Inorganic Chemistry, Wiley-Interscience, New York, 1977.

    Google Scholar 

  4. H. Kroll,J. Am. Chem. Soc., 74, 2036 (1952).

    Google Scholar 

  5. M. L. Bender and B. W. Turnquest,J. Am. Chem. Soc., 79, 1889 (1957).

    Google Scholar 

  6. H. L. Conley and R. B. Martin,J. Phys. Chem. 69, 2914 (1965).

    Google Scholar 

  7. J. E. Hix and M. M. Jones,Inorg. Chem. 5, 1863 (1966).

    Google Scholar 

  8. C. Regardh,Acta Pharm. Suec., 3, 101 (1966).

    Google Scholar 

  9. R. W. Hay and P. Banerjee,J. Chem. Soc., Dalton Trans. 2452 (1980).

  10. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd Edit., Butterworths, London, 1965.

    Google Scholar 

  11. C. W. Davies,J. Chem. Soc., 2093 (1938).

  12. R. W. Hay and P. J. Morris,J. Chem. Soc., Perkin Trans. 1021 (1972).

  13. R. W. Hay and L. J. Porter,J. Chem. Soc. (B), 1261 (1967).

    Google Scholar 

  14. R. W. Hay and P. J. Morris,J. Chem. Soc. (B), 1577 (1970).

    Google Scholar 

  15. C. J. Boreham, D. A. Buckingham and F. R. Keene,Inorg. Chem., 18, 28 (1979) and refs. therein.

    Google Scholar 

  16. R. W. Hay and P. Banerjee,J. Chem. Soc., Dalton Trans., 362 (1981).

  17. R. W. Hay and A. K. Basak,J. Chem. Soc., Dalton Trans., 1819 (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, R.W., Basak, A.K. & Pujari, M.P. Kinetics and mechanism of the copper(II) promoted hydrolysis of the methyl ester of ethylenediaminemonoacetate. Transition Met Chem 11, 27–30 (1986). https://doi.org/10.1007/BF01064497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01064497

Keywords

Navigation