Skip to main content
Log in

Molecular genetics and evolutionary relationship of PCB-degrading bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BP:

biphenyl

bph :

BP/PCB-degradative gene

23DHBP:

2,3-dihydroxybiphenyl

HPDA:

2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid

KF707:

P. pseudoalcaligenes strain KF707

LB400:

Pseudomonas sp. strain LB400

PCB:

polychlorinated biphenyls

Q1:

P. paucimobilis strain Q1tod; toluene catabolic gene

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit. Rev. Biotechnol. 10: 241–251

    Google Scholar 

  • Adams RH, Huang C-H, Higson FK, Brenner V & Focht DD (1992) Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergenic mating. Appl. Environ. Microbiol. 58: 647–654

    Google Scholar 

  • Ahmad D, Massa R & Sylvestre M (1990) Cloning and expression of genes involved in 4-chlorobiphenyl transformation byPseudomonas testosteroni: homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 86: 53–61

    Google Scholar 

  • Ahmed M & Focht DD (1973) Degradation of polychlorinated biphenyls by two species ofAchromobacter. Can. J. Microbiol. 19: 47–52

    Google Scholar 

  • Aust SD (1990) Degradation of environmental pollutants byPhanerochaete chrysosporium. Microb. Ecol. 20: 197–209

    Google Scholar 

  • Barton MR & Crawford RL (1988) Novel biotransformation of 4-chlorobiphenyl by aPseudomonas sp. Appl. Environ. Microbiol. 54: 594–595

    Google Scholar 

  • Bedard DL, Haberl ML, May RJ & Brennan (1987) Evidence for novel mechanisms of polychlorinated biphenyl metabolism inAlcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1103–1112

    Google Scholar 

  • Bedard ML, Unterman R, Bopp LH, Brennan MJ, Haberl ML & Johnson S (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768

    Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown JF Jr (1987) Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls byAlcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Brown JF Jr, Bedard DL, Brennan MJ, Carnahan JC, Feng H & Wagner RE (1987) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236: 709–712

    Google Scholar 

  • Etlis LD, Hofmann B, Hecht H-J, Lünsdorf H & Timmis KT (1993) Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J. Biol. Chem. 268: 2727–2732

    Google Scholar 

  • Erickson B & Mondello F (1992) Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated biphenyl-degrading enzyme inPseudomonas strain LB400. J. Bacteriol. 174: 2903–2912

    Google Scholar 

  • —— (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl. Environ. Microbiol. 59: 3858–3862

    Google Scholar 

  • Furukawa K (1982) Microbial degradation of polychlorinated biphenyls. In: Chakrabarty AM (Ed) Biodegradation and Detoxification of Environmental Pollutants (pp 33–57) CRC Press Inc., Boca Raton, Fla

    Google Scholar 

  • —— (1986) Modification of PCBs by bacteria and other microorganisms. In: Waid J (Ed) PCBs and the Environment (pp 89–99) CRC Press Inc., Boca Raton, Fla

    Google Scholar 

  • Furukawa K & Arimura N (1987) Purification and properties of 2,3-dihydroxybiphenyl dioxygenase from polychlorinated biphenyl-degradingPseudomonas pseudoalcaligenes andPseudomonas aeruginosa carrying the clonedbphC gene. J. Bacteriol. 169: 924–927

    Google Scholar 

  • Furukawa K, Hayase N, Taira K & Tomizuka N (1989) Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conservedbph operon. J. Bacteriol. 171: 5467–5472

    Google Scholar 

  • Furukawa K, Hayashida S & Taira K (1991) Gene-specific transposon mutagenesis of the biphenyl/polychlorinated biphenyl-degradation-controllingbph operon in soil bacteria. Gene 98: 21–28

    Google Scholar 

  • —— (1992) Biochemical and genetic basis for the degradation of polychlorinated biphenyls in soil bacteria. In: Galli E, Silver S & Witholt B (Eds)Pseudomonas: Molecular Biology and Biotechnology (pp 259–267) American Society for Microbiology, Washington DC

    Google Scholar 

  • Furukawa K, Hirose J, Suyama A, Zaiki T & Hayashida S (1993) Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol. 175: 5224–5232

    Google Scholar 

  • Furukawa K, Matsumura F & Tonomura K (1978)Alcaligenes andAcinetobacter strains capable of degrading polychlorinated biphenyls. Agric. Biol. Chem. 42: 543–548

    Google Scholar 

  • Furukawa K & Miyazaki T (1986) Cloning of gene cluster encoding biphenyl and chlorobiphenyl degradation inPseudomonas pseudoalcaligenes. J. Bacteriol. 166: 392–398

    Google Scholar 

  • Furukawa K, Tomizuka N & Kamibayashi A (1979) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310

    Google Scholar 

  • Furukawa K, Tonomura K & Kamibayashi (1978) Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl. Environ. Microbiol. 35: 223–227

    Google Scholar 

  • Gibson DT, Zylstra GT & Chauhan S (1990) Biotransformations catalyzed by toluene dioxygenase fromPseudomonas putida F1. In: Silver S, Chakrabarty AM, Iglewski & Kaplan S (Eds)Pseudomonas: Biotransformation, Pathogenesis, and Evolving Biotechnology (pp 301–310) American Society for Microbiology, Washington, DC

    Google Scholar 

  • Haddock JD, Nadium LM & Gibson DT (1993) Oxidation of biphenyl by a multicomponent enzyme system fromPseudomonas sp. strain LB400. J. Bacteriol. 175: 401–410

    Google Scholar 

  • Harayama S & Kok M (1992) Functional and evolutionary relationship among diverse organisms. Annu. Rev. Microbiol. 46: 565–601

    Google Scholar 

  • Harayama S & Rekik M (1993) Comparison of the nucleotide sequences of the meta-cleavage pathway genes of TOL plasmid pWW0 fromPseudomonas putida with other meta-cleavage genes suggests that both single and multiple nucleotide substitutions contribute to enzyme evolution. Mol. Gen. Genet. 239: 81–89

    Google Scholar 

  • Hayase N, Taira K & Furukawa K (1990)Pseudomonas putida KF715bphABCD operon encoding biphenyl and polychlorinated biphenyl degradation: cloning, analysis and expression in soil bacteria. J. Bacteriol. 172: 1160–1164

    Google Scholar 

  • Hickey WJ, Brenner V & Focht DD (1992) Mineralization of 2-chloro- and 2,5-dichlorobiphenyl byPseudomonas sp. strain UCR2. FEMS Microbiol. Lett. 98: 175–180

    Google Scholar 

  • Higson FK (1992) Microbial degradation of biphenyl and its derivatives. Adv. Appl. Microbiol. 37: 135–164

    Google Scholar 

  • Hirose J, Suyama A, Hayashida S & Furukawa K (1994) Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases. Gene 138: 27–33

    Google Scholar 

  • Hofer B, Eltis LD, Dowling DN & Timmis KN (1993) Genetic analysis of aPseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130: 47–55

    Google Scholar 

  • Khan A & Walia S (1989) Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl fromPseudomonas putida OU83. Appl. Environ. Microbiol. 55: 798–805

    Google Scholar 

  • Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M & Yano K (1989) Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacteriumPseudomonas sp. strain KKS102. J. Bacteriol. 171: 2740–2747

    Google Scholar 

  • Kurkela S, Lehvaslaiho H, Palva ET & Teeri TH (1988) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase ofPseudomonas putida strain NCIB9816. Gene 73: 355–362

    Google Scholar 

  • Mokross H, Schmidt E & Reineke W (1990) Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 71: 179–186

    Google Scholar 

  • Mondello FJ (1989) Cloning and expression inEscherichia coli ofPseudomonas strain LB400 genes encoding polychlorinated biphenyl degradation. J. Bacteriol. 171: 1725–1732

    Google Scholar 

  • Peloquinad L & Greer CW (1993) Cloning and expression of the polychlorinated biphenyl-degradation gene cluster fromArthrobacter M5 and comparison to analogous genes from Gram-negative bacteria. Gene 125: 35–40

    Google Scholar 

  • Pettigrew CA, Breen A, Corcoran C & Sayler GS (1990) Chlorinated biphenyl mineralization by individual population and consortia of freshwater bacteria. Appl. Environ. Microbiol. 56: 2036–2045

    Google Scholar 

  • Quensen III JF, Tieje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242: 752–754

    Google Scholar 

  • Quensen III JF, Boyd SA & Tieje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56: 2360–2369

    Google Scholar 

  • Shingler V, Powlowski J & Marklund U (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway ofPseudomonas sp. strain C600. J. Bacteriol. 174: 711–724

    Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen W, Cruden DL, Gibson DT & Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase inPseudomonas putida strains G7 and NCIB9816-4 Gene 127: 31–37

    Google Scholar 

  • Simon R, Quandt J & Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80: 161–169

    Google Scholar 

  • Springael D, Kreps S & Mergeary M (1993) Identification of catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes inAlcaligenes eutrophus A5. J. Bacteriol. 175: 1674–1681

    Google Scholar 

  • Subramanian V, Lin T, Yeh WK & Gibson DT (1979) Toluene dioxygenase: purification of an iron-sulfer protein by affinity chromatography. Biochem. Biophys. Res. Commun. 91: 1131–1139

    Google Scholar 

  • Taira K, Hayase N, Arimura N, Yamashita S, Miyazaki T & Furukawa K (1988) Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain ofPseudomonaspaucimobilis Q1. Biochemistry 27: 3990–3996

    Google Scholar 

  • Taira K, Hirose J, Hayashida S & Furukawa K (1992) Analysis ofbph operon from the polychlorinated biphenyl-degrading strain ofPseudomonas pseudoalcaligenes KF707. J. Biol. Chem. 267: 4844–4853

    Google Scholar 

  • Zylstra GJ & Gibson DT (1989) Toluene degradation byPseudomonas putida F1: nucleotide sequence of thetodC1 C2BADE genes and their expression inEscherichia coli. J. Biol. Chem. 264: 14940–14946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5, 289–300 (1994). https://doi.org/10.1007/BF00696466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696466

Key words

Navigation