Skip to main content
Log in

A competitive exclusion principle for pathogen virulence

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

For a modified Anderson and May model of host parasite dynamics it is shown that infections of different levels of virulence die out asymptotically except those that optimize the basic reproductive rate of the causative parasite. The result holds under the assumption that infection with one strain of parasite precludes additional infections with other strains. Technically, the model includes an environmental carrying capacity for the host. A threshold condition is derived which decides whether or not the parasites persist in the host population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M.: Transmission dynamics and control of infectious disease agents. In: Anderson, R. M.; May, R. M. (eds.) Population biology of infectious diseases. Dahlem Workshop Reports: Life Sciences Research Report 25. Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  • Anderson, R. M.; May, R. M.: Population biology of infectious diseases. Part I. Nature 280, 361–367 (1979)

    Google Scholar 

  • Anderson, R. M.; May, R. M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond., B 291, 451–524 (1981)

    Google Scholar 

  • Anderson, R. M.; May, R. M.: Co-evolution of host and parasites. Parasitology 85, 411–426 (1982a)

    Google Scholar 

  • Anderson, R. M.; May, R. M. (eds.): Population biology of infectious diseases. Dahlem workshop reports: life sciences research report 25. Berlin Heidelberg New York: Springer 1982b

    Google Scholar 

  • Beck, K.: Co-evolution. Mathematical aspects of host-parasite interactions. J. Math. Biol. 19, 63–77 (1984)

    Google Scholar 

  • Beverton, R. J. H.; Holt, S. J.: On the dynamics of exploited fish populations. Fishery Investigations, Series 2, 19. London: H.M.S.O. 1957

  • Bremermann, H. J.: Reliability of proliferation controls. The Hayflick limit and its breakdown in cancer. J. theor. Biol. 97, 641–662 (1982)

    Google Scholar 

  • Bremermann, H. J.: Theory of catastrophic diseases of cultivated plants. J. theor. Biol. 100, 255–274 (1983)

    Google Scholar 

  • Bremermann, H. J.: The adaptive significance of sexuality. In: Stearns, S. C. (ed.) The evolution of sex and its consequences. Basel Boston: Birkhäuser 1987

    Google Scholar 

  • Bremermann, H. J.; Fiedler, B.: On the stability of polymorphic host-pathogen populations. J. theor. Biol. 117, 621–631 (1985)

    Google Scholar 

  • Bremermann, H. J.; Pickering, J.: A game-theoretical model of parasite virulence. J. theor. Biol. 100, 411–426 (1983)

    Google Scholar 

  • Boyce, W. E.; DiPrima, R. C.: Elementary differential equations and boundary value problems, 3rd edn. New York: Wiley 1977

    Google Scholar 

  • Burdon, J. J.: Diseases and plant population biology. Cambridge: Cambridge University Press 1987

    Google Scholar 

  • Butler, G. J.; Hsu, S. B.; Waltman, P.: Coexistence of competing predators in a chemostat. J. Math. Biol. 17, 133–151 (1983)

    Google Scholar 

  • Butler, G. J.; Waltman, P.: Persistence in dynamical systems. J. Differ. Equations 63, 255–263 (1986)

    Google Scholar 

  • Castillo-Chavez, C.; Hethcote, H. W.; Andreasen, V.; Levin, S. A.; Wei-min Liu: Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In: Proc. of the Research Conference, Second Autumn Course in Mathematical Ecology, Trieste, 1986. Singapore: World Scientific Publishing Co. (in press) 1988

    Google Scholar 

  • Castillo-Chavez, C.; Hethcote, H. W.; Andreasen, V.; Levin, S. A.; Wei-min Liu: Epidemiological models with age structure and proportionate mixing. J. Math. Biol., vol. 27, no. 3 (1989)

  • Dietz, K.: Transmission and control of arbovirus diseases. In: Ludwig, D.; Cooke, K. L. (eds.). Proceedings of a SIMS Conference on Epidemiology. Philadelphia: SIAM 1975

    Google Scholar 

  • Dietz, K.: Epidemiologic interference of virus populations. J. Math. Biol. 8, 291–300 (1979)

    Google Scholar 

  • Dietz, K.: Overall population patterns in the transmission cycle of infectious disease agents. In: Anderson, R. M.; May, R. M. (eds.) Population biology of infectious diseases. Dahlem Workshop Reports: Life Sciences Research Report 25. Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  • Fenner, F.; Ratcliffe, F. N.: Myxomatosis. Cambridge: Cambridge University Press 1965

    Google Scholar 

  • Fenner, F.; Myers, K.: Myxoma virus and myxomatosis in retrospect: the first quarter century of a new disease. In: Viruses and environment, pp. 539–570. London: Academic Press 1978

    Google Scholar 

  • Gillespie, J. H.: Natural selection for resistance to epidemics. Ecology 56, 493–495 (1975)

    Google Scholar 

  • Hartman, P.: Ordinary differential equations. New York: Wiley 1973

    Google Scholar 

  • Hill, R. E.; Hastie, N. D.: Accelerated evolution in the reactive centre regions of serine protease inhibitors. Nature 326, 96–99 (1987)

    Google Scholar 

  • Levin, B. R.; Allison, A. C.; Bremermann, H. J.; Cavalli-Sforza, L. L.; Clarke, B. C.; Frentzel-Beyme, R.; Hamilton, W. D.; Levin, S. A., May, R. M.; Thieme, H. R.: Evolution of parasites and hosts. Group report. In: Anderson, R. M.; May, R. M. (eds.) Population biology of infectious diseases. Dahlem Workshop Reports: Life Sciences Research Report 25. Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  • Levin, S. A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Naturalist 104, 413–423 (1970)

    Google Scholar 

  • Levin, S. A.: Co-evolution. In: Freedman, H. I.; Strobeck, C. (eds.). Population biology (Lect. Notes Biomath., vol. 52) Berlin Heidelberg New York: Springer 1983a

    Google Scholar 

  • Levin, S. A.: Some approaches to the modeling of co-evolutionary interactions. In: Nitecki, M. (ed.). Co-evolution. Chicago: University of Chicago Press 1983b

    Google Scholar 

  • Levin, S. A.; Pimentel, D.: Selection of intermediate rates increase in parasite-host systems. Am. Naturalist 117, 308–315 (1981)

    Google Scholar 

  • Lively, C. M.: Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328, 519–521 (1987)

    Google Scholar 

  • May, R. M.: Stability and complexity in model ecosystems. Princeton, N.J.: Princeton University Press 1975

    Google Scholar 

  • May, R. M.; Anderson, R. M.: Epidemiology and genetics in the co-evolution of parasites and hosts. Philos. Trans. R. Soc. Lond., B, 219, 281–313 (1983)

    Google Scholar 

  • Maynard Smith, J.: Models in ecology. Cambridge: Cambridge University Press 1974

    Google Scholar 

  • Palmieri, J. R.: Be fair to parasites. Nature 298, 220 (1982)

    Google Scholar 

  • Ricker, W. E.: Stock and recruitment. J. Fish. Res. Bd. Canada 11, 559–623 (1954)

    Google Scholar 

  • Saunders, I. W.: Epidemics in competition. J. Math. Biol. 11, 311–318 (1981)

    Google Scholar 

  • Stearns, S. C. (ed.): The evolution of sex and its consequences. Basel Boston: Birkhäuser 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a Heisenberg scholarship of Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremermann, H.J., Thieme, H.R. A competitive exclusion principle for pathogen virulence. J. Math. Biology 27, 179–190 (1989). https://doi.org/10.1007/BF00276102

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276102

Key words

Navigation