Skip to main content

Incremental Learning by Heterogeneous Bagging Ensemble

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6441))

Abstract

Classifier ensemble is a main direction of incremental learning researches, and many ensemble-based incremental learning methods have been presented. Among them, Learn++, which is derived from the famous ensemble algorithm, AdaBoost, is special. Learn++ can work with any type of classifiers, either they are specially designed for incremental learning or not, this makes Learn++ potentially supports heterogeneous base classifiers. Based on massive experiments we analyze the advantages and disadvantages of Learn++. Then a new ensemble incremental learning method, Bagging++, is presented, which is based on another famous ensemble method: Bagging. The experimental results show that Bagging ensemble is a promising method for incremental learning and heterogeneous Bagging++ has the better generalization and learning speed than other compared methods such as Learn++ and NCL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giraud-Carrier, C.: A Note on the Utility of Incremental Learning. AI Communications 13(4), 215–223 (2000)

    MATH  Google Scholar 

  2. Polikar, R., Udpa, L., Udpa, S.S., Honavar, V.: Learn++: An incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews 31(4), 497–508 (2001)

    Article  Google Scholar 

  3. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4, 161–186 (1989)

    Article  Google Scholar 

  4. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Machine Learning. In: Advances in Neural Information Processing Systems, vol. 12, pp. 409–415. MIT Press, Cambridge (2000)

    Google Scholar 

  5. Carpenter, G.A., Grossberg, S., Reynolds, J.H.: ARTMAP: Supervied real-time learning and classification of nonstationary data by a self organizing neural network. Neural Networks 4(5), 565–588 (1991)

    Article  Google Scholar 

  6. Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 31(6), 902–918 (2001)

    Article  Google Scholar 

  7. Sewell, M.: Ensemble learning (2008), http://machine-learning.martinsewell.com/ensembles/ensemble-learning.pdf, (unpublished)

  8. Seipone, T., Bullinaria, J.: Evolving improved incremental learning schemes for neural network systems. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computing (CEC 2005), Piscataway, NJ, pp. 273–280 (2005)

    Google Scholar 

  9. Inoue, H., Narihisa, H.: Self-organizing neural grove and its applications. In: Proceedings of the 2005 International Joint Conference on Neural Networks (IJCNN 2005), Montreal, Canada, pp. 1205–1210 (2005)

    Google Scholar 

  10. Minku, F.L., Inoue, H., Yao, X.: Negative correlation in incremental learning. Natural Computing 8, 280–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  12. Schwenk, H., Bengio, Y.: Boosting neural networks. Neural Computation 12, 1869–1887 (2000)

    Article  Google Scholar 

  13. Asuncion, D.N.A.: UCI machine learning repository (2007), http://www.ics.uci.edu/mlearn/MLRepository.html (unpublished)

  14. Tang, K., Lin, M., Minku, F.L., Yao, X.: Selective Negative Correlation Learning Approach to Incremental Learning. Neurocomputing 72(13-15), 2796–2805 (2009)

    Article  Google Scholar 

  15. Riedmiller, M., Braun, H.: RPROP- A fast adaptive learning algorithm. In: Proc. of ISCIS VII (1992)

    Google Scholar 

  16. Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2009), http://www.csie.ntu.edu.tw/~cjlin/libsvm/ (unpublished)

  17. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artificial Intelligence 154(1-2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, Q.L., Jiang, Y.H., Xu, M. (2010). Incremental Learning by Heterogeneous Bagging Ensemble. In: Cao, L., Zhong, J., Feng, Y. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17313-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17313-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17312-7

  • Online ISBN: 978-3-642-17313-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics