Skip to main content

Boronic Acid-Based Fluorescence Sensors for Glucose Monitoring

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 11))

Abstract

As of today there is no cure of diabetes, and approximately 2.1% of world population is affected by this disease.1 The inability for diabetic patients to appropriately control blood glucose level has long-term health consequences such as cardiovascular problems, renal complications, blindness, nerve damages, and foot and skin complications. These long-term consequences are the direct results of elevated glucose level for a prolonged period of time. Consequently, proper control of blood glucose concentration is the key to reducing complications and prolonging life. A critical step in controlling blood glucose level is appropriate monitoring. At present blood glucose monitoring involves finger pricking to draw blood sample. Another approach used today is the “Gluco Watch,” which uses iontophoresis2 as a way to extract biological fluid for analysis. This is minimally invasive, but has its disadvantages and is not a continuous monitoring approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Hitman, Type 2 Diabetes: Prediction and Prevention. (Wiely; New York, 1999), 3–397.

    Google Scholar 

  2. R. T. Kurnik, B. Berner, J. Tamada, and R. O. Potts, Design and simulation of a reverse ionotophoretic glucose monitoring device, J. Eletochem. Soc, 145, 4119–4125 (1998).

    Article  Google Scholar 

  3. H. M. Heise, R. Marbach, T. H. Koschinsky, and F. A. Gries, Non-invasive blood glucose sensors based on near-infrared spectroscopy, Ann. Occup. Hyp., 18, 439–447 (1994).

    Google Scholar 

  4. J. J. Burmeister, H. Chung, and M. a. Arnold, Phantoms for noninvasive blood glucose sensing with near infrared transmission spectroscopy, Photochem. Photobiol, 67, (1998).

    Google Scholar 

  5. R. Badugu, J. R. Lakowicz, and C. D. Geddes, A glucose sesning contact lens: A non-invasive technique for continuous physiological glucose monitoring, J. Fluorescence, 13, 371–374 (2003).

    Article  Google Scholar 

  6. D. A. Gough, and J. C. Armor, Development of the implantable glucose snesor: What are the prospects and why is it talking so long, Diabetes, 44, 1005–1009 (1995).

    Google Scholar 

  7. J. J. Robert, Continuous monitoring of blood glucose, Hormone research, 57, 81–84 (2002).

    Article  Google Scholar 

  8. A. Maran, C. Crepaldi, A. Avogaro, S. Catuogno, A. Burlina, A. Poscia, and A. Tiengo, Continuous glucose monitoring in conditions other than diabetes, Diabetes Metab Res Rev, 20(Suppl 2), S50–S55 (2004).

    Article  Google Scholar 

  9. E. R. Kenneth, and K. J. Ernest, Issues and implications in the slection of blood glucose monitoring techniques, Diabetes Technol. Ther., 1, 3–11 (1999).

    Article  Google Scholar 

  10. J. P. Lorand, and J. O. Edwards, Polyol Complexes and Structures of the Benzeneboronate Ion., J. Org. Chem., 769–774 (1959).

    Google Scholar 

  11. G. Springsteen, and B. Wang, A Detailed Examination of Boronic Acid-Diol Complexation, Tetrahedron, 58, 5291–5300 (2002).

    Article  Google Scholar 

  12. J. Yan, G. Springsteen, S. Deeter, and B. Wang, The relationship among pKa, pH, and binding constants in the ineteractions between boronic acids and diols-it is not as simple as it appears, Tetrahedron, 60, 11205–11209 (2004).

    Article  Google Scholar 

  13. T. D. James, K. R. A. Sandanayake, R. Iguchi, and S. Shinkai, Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine, J. Am. Chem. Soc, 117, 8982–8987 (1995).

    Article  Google Scholar 

  14. J. Yoon, and A. W. Czarnik, Fluorescent Chemosensors of Carbohydrates. A Means of Chemically Communicating the Binding of Polyols in Water Based on Chelation-Enhanced Quenching, J. Am. Chem. Soc., 114, 5874–5875 (1992).

    Article  Google Scholar 

  15. W. Wang, X. Gao, and B. Wang, Boronic acid-based sensors, Curr. Org. Chem., 6, 1285–1317 (2002).

    Article  Google Scholar 

  16. S. Shinkai, and M. Takeuchi, Molecular design of synthetic receptors with dynamic, (2004).

    Google Scholar 

  17. H. Cao, and M. D. Heagy, Fluorescent chemosensors for carbohydrates: a decade’s worth of bright spies for saccharides in review, Journal of Fluorescence, 14, 569–584 (2004).

    Article  Google Scholar 

  18. S. Striegler, Selective carbohydrates recognition by synthetic receptors in aqueous solution, Curr. Org. Chem., 7, 81–102 (2003).

    Article  Google Scholar 

  19. S. Wiskur, H. Haddou, J. Lavigne, and E. Anslyn, Teaching old indicators new tricks, Acc. Chem. Res, 34, 963–972 (2001).

    Article  Google Scholar 

  20. E. Shoji, and M. Freund, Potentiometric sensors based on the inductive effect on the pKa of poly(aniline): A nonenzymatic glucose sensor, J. Am. Chem. Soc, 123, 3383–3384 (2001).

    Article  Google Scholar 

  21. E. Shoji, and M. Freund, Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid), J. Am. Chem. Soc, 124, 12486–12493 (2002).

    Article  Google Scholar 

  22. G. Springsteen, and B. Wang, Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates., Chem. Commun, 1608–1609 (2001).

    Google Scholar 

  23. T. D. James, and S. Shinkai, Artificial Receptors as Chemosensors for Carbohydrates, Topics in Current Chemistry, 218, 159–200 (2002).

    Article  Google Scholar 

  24. V. Karnati, X. Gao, S. Gao, W. Yang, S. Sabapathy, W. Ni, and B. Wang, A Selective Fluorescent Sensor for Glucose, Bioorg.Med. Chem. Lett., 12, 3373–3377 (2002).

    Article  Google Scholar 

  25. T. D. James, K. R. A. S. Sandanayake, and S. Shinkai, Novel Photoinduced Electron-transfer Sensor for Saccharides Based on the Interaction of Boronic Acid and Amine, Chem. Commun., 477–478 (1994).

    Google Scholar 

  26. G. Wulff, Selective Binding to Polymers via Covalent Bonds — The Construction of Chiral Cavities as Specific Receptor-Sites, Pure. Appl. Chem, 54, 2093–2102 (1982).

    Article  Google Scholar 

  27. W. Yang, J. Yan, H. Fang, and B. Wang, The first fluorescent sensor for D-glucarate based on the cooperative action of boronic acid and guanidinium groups., Chem.Commun., 792–793 (2003).

    Google Scholar 

  28. S. Franzen, W. Ni, and B. Wang, Study of the Mechanism of Electron-Transfer Quenching by Boron-Nitrogen Adducts in Fluorescent Sensors, J. Phys. Chem. B, 107, 12942–12948 (2003).

    Article  Google Scholar 

  29. W. Ni, G. Kaur, G. Springsteen, B. Wang, and S. Franzen, Regulating the Fluorescence Intensity of an Anthracene Boronic Acid System: A B-N Bond or a Hydrolysis Mechanism?, Bioorgan. Chem., 32, 571–581 (2004).

    Article  Google Scholar 

  30. J. C. Norrid, and H. Eggert, Evidence for Mono-and Bisdentate Boronate Complexes of Glucose in the Furanose Form. Application of 1 J C-C Coupling Constants as a Structural Probe, J. Am. Chem. Soc., 117, 1479–1484 (1995).

    Article  Google Scholar 

  31. M. Bielecki, H. Eggert, and J. C. Norrid, A fluorescent glucose sensor binding covalently to all five hydroxy groups of D-glucofurnaose. A reinvestigation., J. Chem. Soc., Perkin Trans 2,, 449–455 (1999).

    Google Scholar 

  32. F. P. Worley, and J. C. Andrews, Mutarotation. I. Velocity of Mutarotation of alpha Glucose in Methyl Alcohol and Water., J. Phys. Chem., 31, 742–746 (1927).

    Article  Google Scholar 

  33. B. Appleton, and T. D. Gibson, Detection of toal sugar concentration using photinduced electron transfer materials: Development of operationally stable, reusable optical sensors, Sens.Actuator.B Chem, 65, 302–304 (2000).

    Article  Google Scholar 

  34. S. Arimori, L. I. Bosch, C. J. Ward, and T. D. James, Fluorescent Internal Charge Transfer (ICT) Saccharide Sensor, Tetrahedron Lett., 42, 4553–4555 (2001).

    Article  Google Scholar 

  35. K. Yasumasa, and T. Hiroaki, Selective Glucose Sensing Utilizing Complexation with Fluorescent Boronic Acid on Polycation, Chem Letters, 34, 196 (2005).

    Article  Google Scholar 

  36. S. Arimori, M. L. Bell, C. S. Oh, K. A. Frimat, and T. D. James, Modular Fluorescence Sensors for Saccharides, J. Chem. Soc., Perkin Trans. 1, 803–808 (2002).

    Article  Google Scholar 

  37. N. DiCesare, and J. R. Lackowicz, Charge transfer fluorescent probes using boronic acid for monosaccharide signaling., Journal of Biomedical Optics, 7, 538–545 (2002).

    Article  ADS  Google Scholar 

  38. N. DiCesare, and J. R. Lackowicz, Spectral properties of Fluorophores Combining the Boronic Acid Group with Electron Donor or Withdrawing Groups. Implication in the Development of Fluorescence Probes for Saccharides, J. Phys. Chem.A, 105, 6834–6840 (2002).

    Article  Google Scholar 

  39. N. DiCesare, and J. R. Lakowicz, Wavelength-ratiometric probes for saccharides based on donor-acceptor diphenylpolyenes, J. Photochem. Photobiol., A, 143, 39–47 (2001).

    Article  Google Scholar 

  40. N. DiCesare, and J. R. Lakowicz, A new highly fluorescent probe formonosaccharides based on a donor-acceptor diphenyloxazole, Chem. Commun., 19, 2022–2023, (2001).

    Article  Google Scholar 

  41. N. DiCesare, and J. R. Lakowicz, Chalcone-analogue fluorescent probes for saccharides signaling using the boronic acid group, Tetrahedron Lett, 43, 2615–2618 (2002).

    Article  Google Scholar 

  42. A. Durkop, Diploma Dissertation, University of Regensburg, (1998).

    Google Scholar 

  43. G. Chen, Z. Guan, C. T. Chen, L. Fu, V. Sundareson, and F. H. Arnold, Nature Biotechnol, 15, 354 (1997).

    Article  Google Scholar 

  44. E. Pringhsheim, E. Terpetschnig, S. Piletsky, and O. Wolfbeis, A polyaniline with near-infrared optical response to saccharides, Adv. Mater., 11, 865–868 (1999).

    Article  Google Scholar 

  45. H. Cao, D. I. Diaz, D. DiCesare, J. R. Lakowicz, and M. D. Heagy, Monoboronic Acid Sensor That Displays Anomalous Fluorescence Sensitivity to Glucose, Org. Lett., 4, 1503–1505 (2002).

    Article  Google Scholar 

  46. H. Cao, T. McGill, and M. D. Heagy, Substituent Effects on Monoboronic Acid Sensors for Saccharides Based on N-Phenyl-1,8-napthalenedicarboximides, J. Org. Chem., 69, 2959–2966 (2004).

    Article  Google Scholar 

  47. H. Eggert, J. Frederiksen, and J. C.Norrild, A New Glucose-selective Fluorescent Bisboronic Acid. First Report of Strong a-Furanose Complexation in Aqueous Solution at Physiological pH, J. Org. Chem., 64, 3846–3852 (1999).

    Article  Google Scholar 

  48. W. Yang, G. Springsteen, J. Yan, S. Deeter, and B. Wang, A Novel Type of Fluorescent Boronic Acid that Shows Large Fluorescence Intensity Changes upon Binding with a Diol in Aqueous Solution at Physiological pH, Bioorg. Med. Chem. Lett., 13, 1019–1022 (2003).

    Article  Google Scholar 

  49. W. Yang, L. Lin, and B. Wang, A New Type of Water-Soluble Fluorescent Boronic Acid Suitable for Construction of Polyboronic Acids for Carbohydrate Recognition, Heterocycl. Commun., Manuscript accepted (2004).

    Google Scholar 

  50. X. Gao, Y. Zhang, and B. Wang, New Boronic Acid Fluorescent Reporter Compounds II. A Naphthalene-based Sensor Functional at Physiological pH, Org. Lett., 5, 4615–4618 (2003).

    Article  Google Scholar 

  51. X. Gao, Y. Zhang, and B. Wang, Naphthalene-based waer-soluble fluorescent boronic acid isomers suitable for ratiometric and off-on sensing of saccharides at physiological pH, New.J.Chem., 29, 1–8 (2005).

    Article  Google Scholar 

  52. D. Michail, P. Vancea, and N. Zolog, Sur l’elimination lacrymale du glucose chez les diabetiques, C. R. Soc. Biol., 125, 1095 (1937).

    Google Scholar 

  53. R. Badugu, J. R. Lakowicz, and C. D. Geddes, Noninvasive Continuous Monitoring of Physiological Glucose Using a Monosaccharide-Sensing Cintact Lens, Anal. Chem., 76, 610–618 (2004).

    Article  Google Scholar 

  54. R. Badugu, J. R. Lakowicz, and C. D. Geddes, Boronic Acid Fluorescent Sensor for Monosaccharide Signaling Based on the 6-methoxyquinolinium Heterocyclic Nucleus: Progress Toward Noninvasive and Continuous Glucose Monitoring, Bioorganic & Medicinal Chemistry, 113–119 (2005).

    Google Scholar 

  55. R. Badugu, J. R. Lakowicz, and C. D. Geddes, Fluorescence Sensors for Monosaccharides Based on the 6-methylquinolinium Nucleus and Boronic Acid Moiety: Potential Application to Ophthalmic Diagnostic, (2005).

    Google Scholar 

  56. J. N. Camara, J. T. Suri, F. E. Cappuccio, R. A. Wessling, and B. Singaram, Boronic Acid Substituted Viologen Based Optival Sugar Sensors: Modulated Quenching with Viologen as a Method for Monosaccharide detection, tetrahedron Letter, 43, 1139–1141 (2002).

    Article  Google Scholar 

  57. S. kabilan, J. Blyth, M. C. Lee, A. J. Marshall, A. Hussain, X. P. Yang, and C. R. Lowe, Glucose-sensitive holographic sensors, Jouranl of Molecular recognition, 17, 162–166 (2004).

    Article  Google Scholar 

  58. S. Kabilan, A. J. Marshall, F. K. Sartain, M. C. Lee, A. Hussain, X. P. Yang, J. Blyth, N. Karangu, K. James, J. Zen, D. Smith, A. Domschke, and C. R. Lowe, Holographic glucose sensors, Biosensors and Bioelectronics, 20, 1602–1610 (2005).

    Article  Google Scholar 

  59. V. L. Alexeev, A. C. Sharma, A. V. Goponeko, S. Das, I. K. Lednev, C. S. wilcox, D. N. Finegold, and S. A. Asher, High Ionic Strength Glucose-Sensing Photonic Crystal, Anal. Chem., 75, 2316–2323 (2003).

    Article  Google Scholar 

  60. B. A. Bunin, The Combinatorial Index. (Academic Press; San Diego, 1998)

    Google Scholar 

  61. N. K. Terrett, Combinatorial Chemistry. (Oxford University Press; New York, 1998)

    Google Scholar 

  62. D. Hall, Combinatorial chemistry — a powerful approach to supermolecule discovery, Canadian Chemical News, 49, 23–25 (1997).

    Google Scholar 

  63. H. M. Geysen, F. Schoenen, D. S. Wagner, and R. Wagner, Combinatotial Compound Libraries for Drug Discovery: An On-going Challenge, Nat. Rev. Drug Discov., 2, 222–230 (2003).

    Article  Google Scholar 

  64. K. S. Lam, M. Lebl, and V. Krchnak, The “One-Bead-One-Compound” Combinatorial Library Method, Chem. Rev., 97, 411–448 (1997).

    Article  Google Scholar 

  65. W. Yang, H. He, and D. G. Drueckhammer, Computer-Guided Design in Molecular Recognition: Design and Synthesis of a Glucopyranose Receptor., Angew. Chem. Int. Ed., 40, 174 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kaur, G., Lin, N., Fang, H., Wang, B. (2006). Boronic Acid-Based Fluorescence Sensors for Glucose Monitoring. In: Geddes, C.D., Lakowicz, J.R. (eds) Glucose Sensing. Topics in Fluorescence Spectroscopy, vol 11. Springer, Boston, MA. https://doi.org/10.1007/0-387-33015-1_16

Download citation

Publish with us

Policies and ethics