Skip to main content
Log in

Simultaneous determination of all aminobutyric acids by chiral derivatization and liquid chromatography-tandem mass spectrometry

  • Rapid Communication
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Aminobutyric acids include eight structural or stereoisomers that exhibit a wide range of biological activities. Recent evidence on some low abundant isomers have increased the demand for highly selective analysis of all the isomers; however, simultaneous separation of all the aminobutyric acid isomers has not been successful yet, except for a specialized method that uses multiple separation columns and a split of samples. In this study, we developed a new analytical method using chiral derivatization and liquid chromatography-tandem mass spectrometry to separate all the aminobutyric acid isomers in a single separation column. All the diastereomeric derivatives were resolved in a C18 column, and the derivatives showed characteristic fragmentation patterns in tandem mass spectrometry. By using the method, we analyzed the isomers in the Arabidopsis thaliana seeds and revealed the existence of three low abundant isomers, i.e., d-, l-β-aminoisobutyric acid, and d-β-aminobutyric acid. The proposed method uses a commercially available chiral derivatizing reagent and a broadly used column; therefore, it can be widely used in biological and food analyses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets obtained during the current study are available from the corresponding author on reasonable request.

References

  1. V. Medici, J.M. Peerson, S.P. Stabler, S.W. French, J.F. Gregory 3rd., M.C. Virata, A. Albanese, C.L. Bowlus, S. Devaraj, E.A. Panacek, N. Rahim, J.R. Richards, L. Rossaro, C.H. Halsted, J. Hepatol. (2010). https://doi.org/10.1016/j.jhep.2010.03.029

    Article  PubMed  PubMed Central  Google Scholar 

  2. I. Baccelli, B. Mauch-Mani, Plant Mol. Biol. (2016). https://doi.org/10.1007/s11103-015-0406-y

    Article  PubMed  Google Scholar 

  3. B.M. Roberts, E.F. Lopes, S.J. Cragg, Cells (2021). https://doi.org/10.3390/cells10030709

    Article  PubMed  PubMed Central  Google Scholar 

  4. H. Tamaki, M. Reguera, Y.M. Abdel-Tawab, Y. Takebayashi, H. Kasahara, E. Blumwald, PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0131213

    Article  PubMed  PubMed Central  Google Scholar 

  5. Z. Wang, L. Bian, C. Mo, H. Shen, L.J. Zhao, K.J. Su, M. Kukula, J.T. Lee, D.W. Armstrong, R. Recker, J. Lappe, L.F. Bonewald, H.W. Deng, M. Brotto, Commun. Biol. (2020). https://doi.org/10.1038/s42003-020-0766-y

    Article  PubMed  PubMed Central  Google Scholar 

  6. B. Zhang, A. Vogelzang, M. Miyajima, Y. Sugiura, Y. Wu, K. Chamoto, R. Nakano, R. Hatae, R.J. Menzies, K. Sonomura, N. Hojo, T. Ogawa, W. Kobayashi, Y. Tsutsui, S. Yamamoto, M. Maruya, S. Narushima, K. Suzuki, H. Sugiya, K. Murakami, M. Hashimoto, H. Ueno, T. Kobayashi, K. Ito, T. Hirano, K. Shiroguchi, F. Matsuda, M. Suematsu, T. Honjo, S. Fagarasan, Nature (2021). https://doi.org/10.1038/s41586-021-04082-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. S.L. Nixon, C.S. Cockell, Astrobiology (2015). https://doi.org/10.1089/ast.2014.1252

    Article  PubMed  Google Scholar 

  8. D. Thevenet, V. Pastor, I. Baccelli, A. Balmer, A. Vallat, R. Neier, G. Glauser, B. Mauch-Mani, New Phytol. (2017). https://doi.org/10.1111/nph.14298

    Article  PubMed  Google Scholar 

  9. B. Mauch-Mani, I. Baccelli, E. Luna, V. Flors, Annu. Rev. Plant Biol. (2017). https://doi.org/10.1146/annurev-arplant-042916-041132

    Article  PubMed  Google Scholar 

  10. A. Balmer, G. Glauser, B. Mauch-Mani, I. Baccelli, Plant Biol. (2019). https://doi.org/10.1111/plb.12940

    Article  PubMed  Google Scholar 

  11. Y. Cohen, M. Vaknin, B. Mauch-Mani, Phytoparasitica (2016). https://doi.org/10.1007/s12600-016-0546-x

    Article  Google Scholar 

  12. E. Luna, M. van Hulten, Y. Zhang, O. Berkowitz, A. Lopez, P. Petriacq, M.A. Sellwood, B. Chen, M. Burrell, A. van de Meene, C.M. Pieterse, V. Flors, J. Ton, Nat. Chem. Biol. (2014). https://doi.org/10.1038/nchembio.1520

    Article  PubMed  PubMed Central  Google Scholar 

  13. B.S. Park, T.H. Tu, H. Lee, D.Y. Jeong, S. Yang, B.J. Lee, J.G. Kim, Cells (2019). https://doi.org/10.3390/cells8121609

    Article  PubMed  PubMed Central  Google Scholar 

  14. Y. Shimba, K. Katayama, N. Miyoshi, M. Ikeda, A. Morita, S. Miura, Biol. Pharm. Bull. (2020). https://doi.org/10.1248/bpb.b20-00078

    Article  PubMed  Google Scholar 

  15. A.B.P. van Kuilenburg, A.E.M. Stroomer, H. van Lenthe, N.G.G.M. Abeling, Biochem. J. (2004). https://doi.org/10.1042/bj20031463.10.1042/bj20031463

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Kitase, J.A. Vallejo, W. Gutheil, H. Vemula, K. Jähn, J. Yi, J. Zhou, M. Brotto, L.F. Bonewald, Cell. Rep. 22, 1531 (2018). https://doi.org/10.1016/j.celrep.2018.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. Hamase, Y. Nakauchi, Y. Miyoshi, R. Koga, N. Kusano, H. Onigahara, H. Naraoka, H. Mita, Y. Kadota, Y. Nishio, M. Mita, W. Lindner, Chromatography (2014). https://doi.org/10.15583/jpchrom.2014.014

    Article  Google Scholar 

  18. H. Vemula, Y. Kitase, N.J. Ayon, L. Bonewald, W.G. Gutheil, Anal. Biochem. (2017). https://doi.org/10.1016/j.ab.2016.10.017

    Article  PubMed  Google Scholar 

  19. E. Sugiyama, T. Higashi, M. Nakamura, H. Mizuno, T. Toyo’oka, K. Todoroki, J. Pharm. Biomed. Anal. (2023). https://doi.org/10.1016/j.jpba.2022.115088

    Article  PubMed  Google Scholar 

  20. S. Fukui, E. Sugiyama, H. Mizuno, I. Sakane, D. Asakawa, K. Saikusa, Y. Nishiya, Y. Amano, K. Takahara, D. Higo, T. Toyo’oka, K. Todoroki, J. Sep. Sci. (2021). https://doi.org/10.1002/jssc.202100350

    Article  PubMed  Google Scholar 

  21. H. Miyano, A. Nakayama, Chromatography (2021). https://doi.org/10.15583/jpchrom.2020.023

    Article  Google Scholar 

  22. T.L. Sheehan, R.A. Yost, LCGC supplements. (2015) https://www.chromatographyonline.com/view/what-s-most-meaningful-standard-mass-spectrometry-instrument-detection-limit-or-signal-noise-ratio. Accessed 25 Dec 2022

  23. K. Fujii, Y. Ikai, H. Oka, M. Suzuki, K. Harada, Anal. Chem. (1997). https://doi.org/10.1021/ac970289b

    Article  Google Scholar 

  24. N. Goto, S. Sando, Y. Sato, K. Hasegawa, J. Weed Sci. Tech. (1995). https://doi.org/10.3719/weed.40.87

    Article  Google Scholar 

Download references

Acknowledgements

RIKEN Arabidopsis Col-0 seeds (SJA05800) used in the preliminary experiments were provided by RIKEN BRC, which is participating in the National BioResource Project of the MEXT/AMED, Japan. We thank Dr. Katsuhiro Nakanishi for his technical advice and constructive comments on the analysis of plant seeds. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant numbers 20K15972 and 22K15264 (to E.S.).

Author information

Authors and Affiliations

Authors

Contributions

ES: conceptualization, resources, methodology, visualization, investigation, writing—original draft preparation, project administration, and funding acquisition. MN: methodology, visualization, data curation, formal analysis, validation, writing—reviewing, and editing. HM: resources, writing—reviewing and editing, and funding acquisition. AF: resources, methodology, supervision, writing—reviewing and editing. KT: resources, writing—reviewing and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Kenichiro Todoroki.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, E., Nakamura, M., Mizuno, H. et al. Simultaneous determination of all aminobutyric acids by chiral derivatization and liquid chromatography-tandem mass spectrometry. ANAL. SCI. 39, 463–472 (2023). https://doi.org/10.1007/s44211-023-00293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00293-w

Keywords

Navigation