Skip to main content
Log in

Isolation of Saccharibacillus WB17 strain from wheat bran phyllosphere and genomic insight into the cellulolytic and hemicellulolytic complex of the Saccharibacillus genus

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The microorganisms living on the phyllosphere (the aerial part of the plants) are in contact with the lignocellulosic plant cell wall and might have a lignocellulolytic potential. We isolated a Saccharibacillus strain (Saccharibacillus WB17) from wheat bran phyllosphere and its cellulolytic and hemicellulolytic potential was investigated during growth onto wheat bran. Five other type strains from that genus selected from databases were also cultivated onto wheat bran and glucose. Studying the chemical composition of wheat bran residues by FTIR after growth of the six strains showed an important attack of the stretching C-O vibrations assigned to polysaccharides for all the strains, whereas the C = O bond/esterified carboxyl groups were not impacted. The genomic content of the strains showed that they harbored several CAZymes (comprised between 196 and 276) and possessed four of the fifth modules reflecting the presence of a high diversity of enzymes families. Xylanase and amylase activities were the most active enzymes with values reaching more than 4746 ± 1400 mIU/mg protein for the xylanase activity in case of Saccharibacillus deserti KCTC 33693 T and 452 ± 110 mIU/mg protein for the amylase activity of Saccharibacillus WB17. The total enzymatic activities obtained was not correlated to the total abundance of CAZyme along that genus. The Saccharibacillus strains harbor also some promising proteins in the GH30 and GH109 modules with potential arabinofuranosidase and oxidoreductase activities. Overall, the genus Saccharibacillus and more specifically the Saccharibacillus WB17 strain represent biological tools of interest for further biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Kim JY, Lee HW, Lee SM, Jae J, Park YK (2019) Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour Technol 279:373–384

    PubMed  CAS  Google Scholar 

  2. Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenerg 46:13–24

    CAS  Google Scholar 

  3. Chandel AK et al (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    PubMed  CAS  Google Scholar 

  4. FitzPatrick M et al (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922

    PubMed  CAS  Google Scholar 

  5. Sun R-C (2009) Detoxification and separation of lignocellulosic biomass prior to fermentation for bioethanol production by removal of lignin and hemicelluloses. BioResources 4(2):452–455

    CAS  Google Scholar 

  6. Liu C et al (2017) Valorization of untreated rice bran towards bioflocculant using a lignocellulose-degrading strain and its use in microalgal biomass harvest. Biotechnol Biofuels 10(1):90

    PubMed  PubMed Central  Google Scholar 

  7. Martinez D et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci 106(6):1954–1959

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Prueckler M et al (2014) Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT-Food Sci Technol 56(2):211–221

    CAS  Google Scholar 

  9. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26(4):361–375

    Google Scholar 

  10. McCann MC, Carpita NC (2015) Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J Exp Bot 66(14):4109–4118

    PubMed  CAS  Google Scholar 

  11. Amarasekara AS (2013) Handbook of cellulosic ethanol. John Wiley & Sons

  12. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance Part I:the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    CAS  Google Scholar 

  13. Wilhelm RC et al (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13(2):413–429

    PubMed  CAS  Google Scholar 

  14. Gontikaki E, Thornton B, Cornulier T, Witte U (2015) Occurrence of priming in the degradation of lignocellulose in marine sediments. PLoS One 10(12):e0143917

  15. Luo C et al (2019) Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Cyrtotrachelus buqueti. Biotechnol Biofuels 12(1):70

    PubMed  PubMed Central  Google Scholar 

  16. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    PubMed  CAS  Google Scholar 

  17. Pati B, Sengupta S, Chandra A (1995) Role of nitrogen fixing bacteria on the phyllosphere of wheat seedlings. Acta Microbiol Immunol Hung 42(4):427–433

    PubMed  CAS  Google Scholar 

  18. Mwajita MR et al (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springerplus 2(1):606

    PubMed  PubMed Central  Google Scholar 

  19. Knorr K, Jørgensen LN, Nicolaisen M (2019) Fungicides have complex effects on the wheat phyllosphere mycobiome. PLoS ONE 14(3):e0213176

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Besaury L, Remond C (2020) Draft genome sequence of saccharibacillus sp. strain WB 17, Isolated from Wheat Phyllosphere. Microbiol Resour Announc 9(7):e01201–e01219

  21. Rivas R et al (2008) Saccharibacillus sacchari gen. nov. sp. nov. isolated from sugar cane. Int J Syst Evol Microbiol 58(PT8):1850–4

    PubMed  CAS  Google Scholar 

  22. Sun JQ et al (2016) Saccharibacillus deserti sp nov isolated from desert soil. Int J Syst Evol Microbiol 66(2):623–627

    PubMed  CAS  Google Scholar 

  23. Yang SY et al (2009) Saccharibacillus kuerlensis sp nov isolated from a desert soil. Int J Syst Evol Microbiol 59(5):953–7

    PubMed  CAS  Google Scholar 

  24. Han H et al (2016) Saccharibacillus qingshengii sp nov isolated from a lead-cadmium tailing. Int J Syst Evol Microbiol 66(11):4645–4649

    PubMed  CAS  Google Scholar 

  25. Kampfer P et al (2016) Saccharibacillus endophyticus sp nov an endophyte of cotton. Int J Syst Evol Microbiol 66(12):5134–5139

    PubMed  Google Scholar 

  26. De Vos P, Ludwig W, Schleifer KH, Whitman WB (2011) Family IV. Paenibacillaceae fam. nov. Bergey's Manual of Systematic Bacteriology 3, 269

  27. Weselowski B et al (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16(1):244

    PubMed  PubMed Central  Google Scholar 

  28. Pontonio E et al (2018) Dynamic and assembly of epiphyte and endophyte lactic acid bacteria during the life cycle of Origanum vulgare L. Front Microbiol 9:1372

    PubMed  PubMed Central  Google Scholar 

  29. Yang L et al (2017) Dominant groups of potentially active bacteria shared by barley seeds become less abundant in root associated microbiome. Front Plant Sci 8:1005

    PubMed  PubMed Central  Google Scholar 

  30. Pswarayi F, Gänzle MG (2019) Composition and origin of the fermentation microbiota of mahewu, a Zimbabwean fermented cereal beverage. Appl Environ Microbiol 85(11):e03130–18

  31. Tanca A et al (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8:391

    PubMed  PubMed Central  Google Scholar 

  32. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom

  33. Peng Y et al (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    PubMed  CAS  Google Scholar 

  34. Parks DH et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25(7):1043–1055

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Karp PD et al (2002) The metacyc database. Nucleic Acids Res 30(1):59–61

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Yin Y et al (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(W1):W445–W451

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Armenteros JJA et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37(4):420–423

    Google Scholar 

  38. Krogh A et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    PubMed  CAS  Google Scholar 

  39. Kidby D, Davidson D (1973) A convenient ferricyanide estimation of reducing sugars in the nanomole range. Anal Biochem 55(1):321–325

    PubMed  CAS  Google Scholar 

  40. Rakotoarivonina H et al (2012) The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth. Microb Cell Fact 11(1):159

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Puentes-Téllez PE, Salles JF (2018) Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb Ecol 76(2):419–429

    PubMed  PubMed Central  Google Scholar 

  42. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Poria V, Saini JK, Singh S, Nain L, Kuhad RC (2020) Arabinofuranosidases: characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresour Technol 304:123019

    PubMed  CAS  Google Scholar 

  44. Bouraoui H et al (2016) The GH51 α-L-arabinofuranosidase from Paenibacillus sp THS1 is multifunctional hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans. Biotechnol Biofuels 9(1):1–14

    Google Scholar 

  45. Bohra V, Tikariha H, Dafale NA (2019) Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl Biochem Biotechnol 187(1):266–281

    PubMed  CAS  Google Scholar 

  46. Gangoiti J et al (2017) Characterization of the Paenibacillus beijingensis DSM 24997 GtfD and its glucan polymer products representing a new glycoside hydrolase 70 subfamily of 4, 6-α-glucanotransferase enzymes. PLoS ONE 12(4):e0172622

    PubMed  PubMed Central  Google Scholar 

  47. Maeng S et al (2019) Cohnella candidum sp nov radiation-resistant bacterium from soil. Antonie Van Leeuwenhoek 112(7):1029–1037

    PubMed  CAS  Google Scholar 

  48. Jiang L et al (2019) Cohnella abietis sp nov isolated from Korean fir (Abies koreana) rhizospheric soil of Halla mountain. J Microbiol 57(11):953–958

    PubMed  CAS  Google Scholar 

  49. Chao L, Jongkees S (2019) High-Throughput Approaches in Carbohydrate-Active Enzymology: glycosidase and glycosyl transferase inhibitors, evolution, and discovery. Angew Chem Int Ed Engl 131(37):12880–12890

    Google Scholar 

  50. Spertino S et al (2018) Cellulomonas fimi secretomes: in vivo and in silico approaches for the lignocellulose bioconversion. J Biotechnol 270:21–29

    PubMed  CAS  Google Scholar 

  51. Granja-Travez RS, Bugg TD (2018) Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation. Arch Biochem Biophys 660:97–107

    PubMed  CAS  Google Scholar 

  52. Forney LJ et al (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257(19):11455–11462

    PubMed  CAS  Google Scholar 

  53. Martínez A et al (2018) Biological lignin degradation. Lignin Valorization: Emerging Approaches 19:199

    Google Scholar 

  54. Westermark U, Eriksson KE (1974) Carbohydrate-dependent enzymic quinone reduction during lignin degradation. Acta chem scand B 28(2):204–208

    CAS  Google Scholar 

  55. Kontur WS et al (2018) Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin. J Biol Chem 293(14):4955–4968

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Adesioye FA et al (2016) Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 93:79–91

    PubMed  Google Scholar 

  57. Zheng H-C et al (2014) Purification and characterization of a thermostable xylanase from Paenibacillus sp NF1 and its application in xylooligosaccharides production. J microbiol biotechnol 24(4):489–496

    PubMed  CAS  Google Scholar 

  58. Tsusaki K, Watanabe H, Yamamoto T, Nishimoto T, Chaen H, Fukuda S (2012) Purification and characterization of highly branched α-glucan–producing enzymes from Paenibacillus sp. PP710. Biosci Biotechnol Biochem 1203292865–1203292865

  59. Ikram-Ul-Haq HU, Mahmood Z, Javed MM (2012) Solid state fermentation for the production of α-amylase by Paenibacillus amylolyticus. Pak J Bot 44:341–346

    CAS  Google Scholar 

  60. Rajesh T et al (2013) Identification and Functional Characterization of an α-Amylase with Broad Temperature and pH Stability from Paenibacillus sp. Appl Biochem Biotechnol 170(2):359–369

    PubMed  CAS  Google Scholar 

  61. Zhang XZ, Zhang YHP (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Eng Life Sci 10(5):398–406

    CAS  Google Scholar 

  62. Waghmare PR et al (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141

    PubMed  CAS  Google Scholar 

  63. Sills DL, Gossett JM (2012) Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses. Biotechnol Bioeng 109(4):894–903

    PubMed  CAS  Google Scholar 

  64. Heidary Vinche M, Khanahmadi M, Ataei SA, Danafar F (2021) Optimization of process variables for production of beta-glucanase by Aspergillus niger CCUG33991 in solid-state fermentation using wheat bran. Waste Biomass Valoriz 12(6):3233–3243

    CAS  Google Scholar 

  65. Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmén L (2011) FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells

  66. Xu F et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    CAS  Google Scholar 

  67. Lun LW, Gunny AAN, Kasim FH, Arbain D (2017) Fourier transform infrared spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent. In AIP conference proceedings, vol 1835, no 1. AIP Publishing LLC, p 020049

  68. Wang Z et al (2013) The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Eng 114(2):183–191

    CAS  Google Scholar 

  69. Wilson CM et al (2017) LacI transcriptional regulatory networks in Clostridium thermocellum DSM1313. Appl Environ Microbiol 83(5):e02751-e2816

    PubMed  PubMed Central  Google Scholar 

  70. Bai W et al (2016) Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 16(1):1–9

    Google Scholar 

  71. Ghazi S et al (2014) UV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition. Iran J Basic Med Sci 17(11):844

    PubMed  PubMed Central  Google Scholar 

  72. Dutta B et al (2018) In silico studies on bacterial xylanase enzyme: structural and functional insight. J Genet Eng Biotechnol 16(2):749–756

    PubMed  PubMed Central  Google Scholar 

  73. Liu G et al (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8(2):e55185

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Shi H et al (2014) Characterization of a novel GH2 family α-L-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotech Lett 36(6):1321–1328

    CAS  Google Scholar 

  75. Matsuo N et al (2000) Purification, characterization and gene cloning of two α-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem J 346(1):9–15

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Miyazaki K (2005) Hyperthermophilic α-L-arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9(5):399–406

    PubMed  CAS  Google Scholar 

  77. Chacón-Martínez CA et al (2004) Identification and characterization of the α-l-arabinofuranosidase B of Fusarium oxysporum f sp dianthi. Physiol Mol Plant Pathol 64(4):201–208

    Google Scholar 

  78. Tsujibo H et al (2002) Cloning and expression of an α-L-arabinofuranosidase gene (stxIV) from Streptomyces thermoviolaceus OPC-520, and characterization of the enzyme. Biosci Biotechnol Biochem 66(2):434–438

    PubMed  CAS  Google Scholar 

  79. Zhou J et al (2012) Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 39(1):143–152

    PubMed  CAS  Google Scholar 

  80. Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the project ANS Fralicocmi supported by the CEPIA Department from the French National Institute for Agricultural Research and Environment (INRAE). The authors are grateful to the French Region Grand Est, Grand Reims and the European Regional Development Fund (ERDF) for the financial support of the chaire AFERE.

Author information

Authors and Affiliations

Authors

Contributions

Ludovic Besaury: investigation, supervision, methodology, original draft preparation, reviewing and editing; Mathilde Bocquart: investigation; Caroline Remond: reviewing and editing.

Corresponding author

Correspondence to Ludovic Besaury.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Luiz Henrique Rosa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 466 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besaury, L., Bocquart, M. & Rémond, C. Isolation of Saccharibacillus WB17 strain from wheat bran phyllosphere and genomic insight into the cellulolytic and hemicellulolytic complex of the Saccharibacillus genus. Braz J Microbiol 53, 1829–1842 (2022). https://doi.org/10.1007/s42770-022-00819-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00819-w

Keywords

Navigation