Skip to main content
Log in

Calculation of dpa rate in graphite box of Tehran Research Reactor (TRR)

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Radiation damage is an important factor that must be considered while designing nuclear facilities and nuclear materials. In this study, radiation damage is investigated in graphite, which is used as a neutron reflector in the Tehran Research Reactor (TRR) core. Radiation damage is shown by displacement per atom (dpa) unit. A cross section of the material was created by using the SPECOMP code. The concentration of impurities present in the non-irradiated graphite was measured by using the ICP-AES method. In the present study the MCNPX code had identified the most sensitive location for radiation damage inside the reactor core. Subsequently, the radiation damage (spectral-averaged dpa values) in the aforementioned location was calculated by using the SPECTER, SRIM Monte Carlo codes, and Norgett, Robinson and Torrens (NRT) model. The results of “Ion Distribution and Quick Calculation of Damage” (QD) method groups had a minor difference with the results of the SPECTER code and NRT model. The maximum radiation damage rate calculated for the graphite present in the TRR core was 1.567 × 10−8 dpa/s. Finally, hydrogen retention was calculated as a function of the irradiation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007)

    Google Scholar 

  2. D.G. Cacuci, Handbook of Nuclear Engineering: Vol. 1: Nuclear Engineering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis; Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommissioning, Waste Disposal and Safeguards. Vol. 2 (Springer, Berlin, 2010)

    Google Scholar 

  3. G.Y. Wu, N.W. Hu, H.Q. Deng et al., Simulation of radiation damages in molybdenum by combining molecular dynamics and OKMC. Nucl. Sci. Tech. 28, 3 (2017). https://doi.org/10.1007/s41365-016-0164-9

    Article  Google Scholar 

  4. Y. Yang, Y.W. Su, W.Y. Li et al., Evaluation of radiation environment in the target area of fragment separator HFRS at HIAF. Nucl. Sci. Tech. 29, 147 (2018). https://doi.org/10.1007/s41365-018-0479-9

    Article  Google Scholar 

  5. S.A. Fabritsiev, A.S. Pokrovsky, S.J. Zinkle et al., The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys. J. Nucl. Mater. 233, 526–533 (1996). https://doi.org/10.1016/S0022-3115(96)00260-7

    Article  Google Scholar 

  6. C. Hubert, K.O. Voss, M. Bender et al., Swift heavy ion-induced radiation damage in isotropic graphite studied by micro-indentation and in situ electrical resistivity. Nucl. Instrum. Methods B 365, 509–514 (2015). https://doi.org/10.1016/j.nimb.2015.08.056

    Article  Google Scholar 

  7. B.T. Kelly, Graphite—the most fascinating nuclear material. Carbon 20, 3–11 (1982). https://doi.org/10.1016/0008-6223(82)90066-5

    Article  Google Scholar 

  8. B.T. Kelly, Physics of Graphite (Applied Science, London, 1981), p. 267

    Google Scholar 

  9. H. Atsumi, T. Tanabe, T. Shikama, Bulk hydrogen retention in neutron-irradiated graphite at elevated temperatures. J. Nucl. Mater. 390, 581–584 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.112

    Article  Google Scholar 

  10. T.R. Allen, K. Sridharan, L. Tan et al., Materials challenges for generation IV nuclear energy systems. Nucl. Technol. 162, 342–357 (2008). https://doi.org/10.13182/NT08-A3961

    Article  Google Scholar 

  11. R. Nightingale, Graphite in Nuclear Industry (Academic Press, New York, 1962)

    Google Scholar 

  12. P.A. Thrower, W.N. Reynolds, Microstructural changes in neutron-irradiated graphite. J. Nucl. Mater. 8, 221–226 (1963). https://doi.org/10.1016/0022-3115(63)90037-0

    Article  Google Scholar 

  13. G. Ramos, B.M.U. Scherzer, Radiation damage, trapping and release of deuterium in diamond and HOPG-graphite. Nucl. Instrum. Methods B 174, 329–336 (2001). https://doi.org/10.1016/S0168-583X(00)00590-5

    Article  Google Scholar 

  14. S.P. Jing, C. Zhang, J. Pu et al., 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl. Sci. Tech. 27, 66 (2016). https://doi.org/10.1007/s41365-016-0071-0

    Article  Google Scholar 

  15. C. Karthik, J. Kane, D.P. Butt et al., Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites. Carbon 86, 124–131 (2015). https://doi.org/10.1016/j.carbon.2015.01.036

    Article  Google Scholar 

  16. O. Noorikalkhoran, I. Sevostianov, Micromechanical modeling of neutron irradiation induced changes in yield stress and electrical conductivity of zircaloy. Int. J. Eng. Sci. 120, 119–128 (2017). https://doi.org/10.1016/j.ijengsci.2017.07.002

    Article  MATH  Google Scholar 

  17. D. Saad, H. Nenkharfia, M. Izerrouken et al., Displacement damage cross section and mechanical properties calculation of an Es-Salam research reactor aluminum vessel. Nucl. Sci. Technol. 28, 162 (2017). https://doi.org/10.1007/s41365-017-0319-3

    Article  Google Scholar 

  18. U. Saha, K. Devan, A. Bachchan et al., Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF/B-VII. 1. Pramana 90, 46 (2018). https://doi.org/10.1007/s12043-018-1536-y

    Article  Google Scholar 

  19. D. Guo, C. He, H. Zang et al., Re-evaluation of neutron displacement cross sections for silicon carbide by a Monte Carlo approach. J. Nucl. Sci. Technol. 53, 161–172 (2016). https://doi.org/10.1080/00223131.2015.1028502

    Article  Google Scholar 

  20. H. Atsumi, M. Iseki, T. Shikama, Hydrogen behavior in carbon-based materials and its neutron irradiation effect. J. Nucl. Mater. 233, 1128–1132 (1996). https://doi.org/10.1016/0022-3115(95)00180-8

    Article  Google Scholar 

  21. H.M. Freeman, A.N. Jones, M.B. Ward et al., On the nature of cracks and voids in nuclear graphite. Carbon 103, 45–55 (2016). https://doi.org/10.1016/j.carbon.2016.03.011

    Article  Google Scholar 

  22. T. Burchell, Neutron irradiation damage in graphite and its effects on properties, in Proceedings Carbon’02 (2002), pp. 15–19

  23. C. Goodwin, A. Barkatt, M. Al-Sheikhly, On the mechanism of the interactions of neutrons and gamma radiation with nuclear graphite—implications to HTGRs. Radiat. Phys. Chem. 97, 38–47 (2014). https://doi.org/10.1016/j.radphyschem.2013.10.021

    Article  Google Scholar 

  24. R. Takahashi, M. Toyahara, S. Maruki, et al., Investigation of morphology and impurity of nuclear grade graphite, and leaching mechanism of carbon-14, in Proceedings of the Nuclear Graphite Waste Management (1999), pp. 18–20

  25. H. Atsumi, A. Muhaimin, T. Tanabe et al., Hydrogen trapping in neutron-irradiated graphite. J. Nucl. Mater. 386, 379–382 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.135

    Article  Google Scholar 

  26. J. Rees, S. Assurance, Wigner Energy in Irradiated Graphite and Post-Closure Safety: R&D Technical Report P3-80/TR (Environment Agency, Bristol, 2002)

  27. N.S.T.R. Institute, Final Safety Analyses Report for Tehran Research Reactor (Atomic Energy Organization of Iran, Tehran, 2009)

    Google Scholar 

  28. U. Saha, K. Devan, S. Ganesan, A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013. J. Nucl. Mater. 503, 30–41 (2018). https://doi.org/10.1016/j.jnucmat.2018.02.039

    Article  Google Scholar 

  29. D.B. Pelowitz, MCNPX 2.6.0 Manual, LANL, LA-CP-07-1473 (Los Alamos National Laboratory, Santa Fe, 2008)

    Google Scholar 

  30. A. Mohammadi, S. Hamidi, M.A. Asadabad, The use of the SRIM code for calculation of radiation damage induced by neutrons. Nucl. Instrum. Methods B 412, 19–27 (2017). https://doi.org/10.1016/j.nimb.2017.08.036

    Article  Google Scholar 

  31. L.R. Greenwood, R.K. Smither, SPECTER: Neutron Damage Calculations for Materials Irradiations (Argonne National Lab, Lemont, 1985)

    Book  Google Scholar 

  32. J.F. Ziegler, J.P. Biersack, SRIM-2008: Stopping power and range of ions in matter (2008)

  33. M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975). https://doi.org/10.1016/0029-5493(75)90035-7

    Article  Google Scholar 

  34. R. Stoller, G. Odette, Recommendations on damage exposure units for ferritic steel embrittlement correlations. J. Nucl. Mater. 186, 203–205 (1992). https://doi.org/10.1016/0022-3115(92)90335-I

    Article  Google Scholar 

  35. L.R. Greenwood, SPECOMP calculations of radiation damage in compounds. In Reactor Dosimetry: Methods, Applications, and Standardization (ASTM International, 1989)

  36. R. Plukienė, A. Plukis, A. Plzas et al., Modelling of impurity activation in the RBMK reactor graphite using MCNPX. Prog. Nucl. Sci. Technol. 2, 421–426 (2011). https://doi.org/10.15669/pnst.2.421

    Article  Google Scholar 

  37. S.F.G. Ardekani, K. Hadad, Evaluation of radiation damage in belt-line region of VVER-1000 nuclear reactor pressure vessel. Prog. Nucl. Energy 99, 96–102 (2017). https://doi.org/10.1016/j.pnucene.2017.05.00

    Article  Google Scholar 

  38. W. Dorchester, RSICC COMPUTER CODE COLLECTION WIMS-D4, in Atomic Energy Establishment (1990)

  39. ORNL, WIMS, D4: Winfrith Improved Multigroup Scheme Code System (Code CCC-575 Oak Ridge National Laboratory, Oak Ridge, TN, 1991)

  40. I. Santos, L.A. Marqués, L. Pelaz, Modeling of damage generation mechanisms in silicon at energies below the displacement threshold. Phys. Rev. B 74, 174115 (2006). https://doi.org/10.1103/PhysRevB.74.174115

    Article  Google Scholar 

  41. Y. Iwamoto, H. Iwamoto, M. Harada et al., Calculation of displacement cross-sections for structural materials in accelerators using PHITS event generator and its applications to radiation damage. J. Nucl. Sci. Technol. 51, 98–107 (2014). https://doi.org/10.1080/00223131.2013.851042

    Article  Google Scholar 

  42. D.W. Muir, R.M. Boicourt, A.C. Kahler, The NJOY Nuclear Data Processing System, Version 2012 (Los Alamos National Laboratory, Santa Fe, 2012)

    Google Scholar 

  43. G. Kinchin, R. Pease, The displacement of atoms in solids by radiation. Rep. Prog. Phys. 18, 1 (1955). https://doi.org/10.1088/0034-4885/18/1/301

    Article  Google Scholar 

  44. S.F.G. Ardekani, K. Hadad, Monte Carlo evaluation of neutron irradiation damage to the VVER-1000 RPV. Nucl. Energy Technol. 3, 73–80 (2017). https://doi.org/10.1016/j.nucet.2017.04.001

    Article  Google Scholar 

  45. R.E. Stoller, M.B. Toloczko, G.S. Was et al., On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75–80 (2013). https://doi.org/10.1016/j.nimb.2013.05.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asadi Asadabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, M.A., Asadi Asadabad, M., Hassanzadeh, M. et al. Calculation of dpa rate in graphite box of Tehran Research Reactor (TRR). NUCL SCI TECH 30, 92 (2019). https://doi.org/10.1007/s41365-019-0621-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0621-3

Keywords

Navigation