Skip to main content
Log in

Study of neutron production and moderation for sulfur neutron capture therapy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Neutron capture therapy with Sulfur-33, similar to boron neutron capture therapy with Boron-10, is effective in treating some types of tumors including ocular melanoma. The key point in sulfur neutron capture therapy is whether the neutron beam flux and the resonance capture cross section of \(^{33}\hbox {S(n},\alpha )^{30}\hbox {Si}\) reaction at 13.5 keV can achieve the requirements of radiotherapy. In this research, the authors investigated the production of 13.5 keV neutron production and moderation based on an accelerator neutron source. A lithium glass detector was used to measure the neutron flux produced via near threshold \(^{7}\hbox {Li(p,n)}^{7}\hbox {Be}\) reaction using the time-of-flight method. Furthermore, the moderation effects of different kinds of materials were investigated using Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Chadwick, The existence of a neutron. Proc. R. Soc. 136, 692 (1932). https://doi.org/10.1098/rspa.1932.0112

    Article  Google Scholar 

  2. G.L. Locher, Biological effects and the therapeutic possibilities of neutrons. Am. J. Roentgenol. 36, 1 (1936)

    Google Scholar 

  3. L.E. Farr, W.H. Sweet, H.B. Locksley et al., Neutron capture therapy of gliomas using boron. Trans. Am. Neurol. Assoc. 13, 110 (1954)

    Google Scholar 

  4. R.L. Moss, Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl. Radiat. Isot. 88, 2 (2014). https://doi.org/10.1016/j.apradiso.2013.11.109

    Article  Google Scholar 

  5. I. Porras, Sulfur-33 nanoparticles: a Monte Carlo study of their potential as neutron capturers for enhancing boron neutron capture therapy of cancer. Appl. Radiat. Isot. 69, 1838 (2011). https://doi.org/10.1016/j.apradiso.2011.04.002

    Article  Google Scholar 

  6. M. Sabaté-Gilarte, J. Praena, I. Porras et al., Measurement of the \(^{33}\)S(n,\(\alpha\)) cross section at n\_TOF(CERN): applications to BNCT. Rep. Pract. Oncol. Radiother. 21, 113 (2016). https://doi.org/10.1016/j.rpor.2014.08.007

    Article  Google Scholar 

  7. C. Wagemans, H. Weigmann, R. Barthelemy, Measurement and resonance analysis of the \(^{33}\)S(n,\(\alpha\)) cross section. Nucl. Phys. A 469, 497 (1987). https://doi.org/10.1016/0375-9474(87)90035-2

    Article  Google Scholar 

  8. I. Porras, Enhancement of neutron radiation dose by the addition of sulphur-33 atoms. Phys. Med. Biol. 53, L1 (2008). https://doi.org/10.1088/0031-9155/53/7/L01

    Article  Google Scholar 

  9. I. Porras, J. Praena, M. Sabatégilarte et al, \(^{33}\)S(n,\(\alpha\)) cross section measurement at n\_TOF: implications in neutron capture therapy. http://digital.csic.es/handle/10261/123302

  10. J. Praena, M. Sabaté-Gilarte, I. Porras et al., \(^{33}\)S as a cooperative capturer for BNCT. Appl. Radiat. Isot. 88, 203 (2014). https://doi.org/10.1016/j.apradiso.2013.12.039

    Article  Google Scholar 

  11. I. Porras, P.L. Esquinas, M.G. Feldmann et al., A potential selective radiotherapy for ocular melanoma by sulfur neutron capture, in 16th International Congress on Neutron Capture Therapy (ICNCT-16) , Helsinki, Finland, June 14–19 (2014)

  12. J. Praena, Experimental study of the 13.5 keV resonance of the \(^{33}\)S(n,\(\alpha\))\(^{30}\)Si reaction at CERN n\_TOF fa-cility for BNCT, in 16th International Congress on Neutron Capture Therapy (ICNCT-16), Helsinki, Finland, June 14–19 (2014)

  13. I. Porras, M. Sabaté-Gilarte, J. Praena et al., \(^{33}\)S for neutron capture therapy: nuclear data for Monte Carlo calculations. Nucl. Data Sheets 120, 246 (2014). https://doi.org/10.1016/j.nds.2014.07.058

    Article  Google Scholar 

  14. M. Sabaté-Gilarte, The \(^{33}\)S(n,\(\alpha\))\(^{30}\)Si cross section measured at n\_TOF Experimental Area 2(CERN): from thermal to the resolved resonance region, in International Nuclear Data Conference for Science and Technology (ND2016), Bruges, Belgium , September 11–16 (2016)

  15. M. Sabaté-Gilarte, J. Praena, I. Porras et al., Measurement of the \(^{33}\)S(n,\(\alpha\)) cross section at n\_TOF(CERN): applications to BNCT. Reports Prac. Onco. Radio 21, 113 (2016). https://doi.org/10.1016/j.rpor.2014.08.007

    Article  Google Scholar 

  16. T.E. Blue, J. Yanch, Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. J. Neuro-Oncol. 62, 19 (2003)

    Google Scholar 

  17. D.M. Minsky, A.J. Kreiner, Near threshold \(^7\)Li(p, n)\(^7\)Be reaction as neutron source for BNCT. Appl. Radiat. Isot. 106, 68 (2015). https://doi.org/10.1016/j.apradiso.2015.07.038

    Article  Google Scholar 

  18. K.V.K. Iyengar, S.K. Gupta, K.K. Sekharan et al., Fluctuations in the integrated cross section of the reaction \(^{45}\)Sc(p, n)\(^{45}\)Ti. Nucl. Phys. A 96, 521 (1967). https://doi.org/10.1016/0375-9474(67)90602-1

    Article  Google Scholar 

  19. M.S. Herrera, G.A. Moreno, A.J. Kreiner et al., New method to evaluate the \(^7\)Li(p, n)\(^7\)Be reaction near threshold. Nucl. Instrum. Meth. B 349, 64 (2015). https://doi.org/10.1016/j.nimb.2015.01.080

    Article  Google Scholar 

  20. R. Mateus, A.P. Jesus, B. Braizinha et al., Proton-induced \(\gamma\)-ray analysis of lithium in thick samples. Nucl. Instrum. Meth. B 190, 117 (2002). https://doi.org/10.1016/S0168-583X(01)01222-8

    Article  Google Scholar 

  21. D. Schlegel, Target User’s Manual. Abteilung Ionisierende Strahlung Laborbericht (2005)

  22. D. Schlegel, S. Guldbakke, Why do We Need Target? (Springer, Berlin, 2001), p. 881

    Google Scholar 

  23. IAEA-TECDOC-1223, Current Status of Neutron Capture Therapy, (International Atomic Energy Agency, Austria, 2001)

  24. Geant4 Collaboration, User’s Guide: For Application Developers (2015). http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.2/fo/BookForAppliDev.pdf

  25. Geant4 Collaboration, Physics Reference Manual (2015). http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf

  26. C.L. Lan, M. Peng, Y.Z. et al., Geant4 simulation of \(^{238}\)U(n,f) reaction induced by D-T neutron source. Nucl. Sci. Tech. 28, 8 (2016). https://doi.org/10.1007/s41365-016-0158-7

  27. B. Yang, X. Guan, X. Cao et al., Progresses in the project of upgrading HI-13 tandem accelerator at CIAE. Nucl. Tech. 31, 41 (2008). (in Chinese)

    Google Scholar 

  28. Q.W. Zhang, G.Z. He, X.C. Ruan et al., Calibration of neutron detection efficiency of li-glass detector. Nucl. Phys. Rev. 34, 2460 (2013). https://doi.org/10.11804/NuclPhysRev.30.02.156. (in Chinese)

    Article  Google Scholar 

  29. G.F. Auchampaugh, J. Halperin, R. L. Macklin et al., Kilovolt \(^{33}\text{S}(n, {\alpha }_{0})\) and \(^{33}\text{ S }(n, {\gamma })\) cross sections: Importance in the nucleosynthesis of the rare nucleus \(^{36}\text{ S }\). Phys. Rev. C 12, 1126 (1975). https://doi.org/10.1103/PhysRevC.12.1126

  30. P.E. Koehler, J.A. Harvey, N.W. Hill, Two detectors for (n, p) and (n,\(\alpha\)) measurements at white neutron sources. Nucl. Instrum. Meth. A 361, 270 (1995). https://doi.org/10.1016/0168-9002(95)00123-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., He, GZ., Zhang, QW. et al. Study of neutron production and moderation for sulfur neutron capture therapy. NUCL SCI TECH 30, 2 (2019). https://doi.org/10.1007/s41365-018-0529-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0529-3

Keywords

Navigation