Skip to main content

Advertisement

Log in

Astrophysical constraints on a parametric equation of state for neutron-rich nucleonic matter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Extracting the equation of state (EOS) and symmetry energy of dense neutron-rich matter from astrophysical observations is a long-standing goal of nuclear astrophysics. To facilitate the realization of this goal, the feasibility of using an explicitly isospin-dependent parametric EOS for neutron star matter was investigated recently in [1,2,3]. In this contribution, in addition to outlining the model framework and summarizing the most important findings from [1,2,3], we report a few new results regarding constraining parameters characterizing the high-density behavior of nuclear symmetry energy. In particular, the constraints on the pressure of neutron star matter extracted from combining the X-ray observations of the neutron star radius, the minimum–maximum mass \(M=2.01\) \(\hbox {M}_\odot \), and causality condition agree very well with those extracted from analyzing the tidal deformability data by the LIGO + Virgo Collaborations. The limitations of using the radius and/or tidal deformability of neutron stars to constrain the high-density nuclear symmetry energy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N.B. Zhang, B.A. Li, J. Xu, Combined constraints on the equation of state of dense neutron-rich natter from terrestrial nuclear experiments and observations of neutron stars. Astrophys. J. 859, 90 (2018). https://doi.org/10.3847/1538-4357/aac027

    Article  Google Scholar 

  2. N.B. Zhang, B.A. Li, Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves. arXiv:1807.07698v1

  3. N.B. Zhang, B.A. Li, Delineating effects of nuclear symmetry energy on the radii and tidal deformabilities of neutron stars. J. Phys. G in press arXiv:1808.07955v1

  4. J.M. Lattimer, M. Prakash, The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127–164 (2016). https://doi.org/10.1016/j.physrep.2015.12.005

    Article  MathSciNet  Google Scholar 

  5. R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars-implications for gamma-ray bursts. Astrophys. J. 392, L9-13 (1992). http://adsabs.harvard.edu/abs/1992ApJ...392L...9D

  6. C. Thompson, R.C. Duncan, Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194–217 (1993). http://adsabs.harvard.edu/abs/1993ApJ...408..194T

  7. J.W.T. Hessels, S.M. Ransom, I.H. Stairs et al., A radio pulsar spinning at 716 Hz. Science 311, 1901–1904 (2006). https://doi.org/10.1007/s41365-017-0329-1

    Article  Google Scholar 

  8. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592–1596 (2002). https://doi.org/10.1126/science.1078070

    Article  Google Scholar 

  9. A.L. Watts, N. Andersson, D. Chakrabarty et al., Colloquium: measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 88, 021001 (2016). https://doi.org/10.1103/RevModPhys.88.021001

    Article  Google Scholar 

  10. M. Oertel, M. Hempel, T. Klähn, S. Typel, Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89, 015007 (2017). https://doi.org/10.1103/RevModPhys.89.015007

    Article  Google Scholar 

  11. F. Özel, P. Freire, Masses, radii, and the equation of state of neutron stars. Annu. Rev. Astron. Astrophys. 54, 401 (2016). https://doi.org/10.1146/annurev-astro-081915-023322

    Article  Google Scholar 

  12. B.A. Li, Nuclear symmetry energy extracted from laboratory experiments. Nucl. Phys. News 27, 7 (2017). https://doi.org/10.1080/10619127.2017.1388681

    Article  Google Scholar 

  13. D. Blaschke, N. Chamel, Phases of dense matter in compact stars. arXiv:1803.01836

  14. National Research Council, New Worlds, New Horizons in Astronomy and Astrophysics (The National Academies Press, Washington, DC, 2010). https://doi.org/10.17226/12951

    Book  Google Scholar 

  15. National Research Council, Nuclear Physics: Exploring the Heart of Matter (The National Academies Press, Washington, DC, 2013). https://doi.org/10.17226/13438

    Book  Google Scholar 

  16. C. Fuchs, Kaon production in heavy ion reactions at intermediate energies. Prog. Part. Nucl. Phys. 56, 1–103 (2006). https://doi.org/10.1016/j.ppnp.2005.07.004

    Article  Google Scholar 

  17. W.G. Lynch, M.B. Tsang, Y. Zhang et al., Probing the symmetry energy with heavy ions. Prog. Part. Nucl. Phys. 62, 427–432 (2009). https://doi.org/10.1016/j.ppnp.2009.01.001

    Article  Google Scholar 

  18. The LIGO Scientific Collaboration, Virgo Collaboration, GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101

    Article  Google Scholar 

  19. M. Dutra, O. Louren, J.S.S. Martins et al., Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201

    Article  Google Scholar 

  20. M. Dutra, O. Louren, S.S. Avancini et al., Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90, 055203 (2014). https://doi.org/10.1103/PhysRevC.90.055203

    Article  Google Scholar 

  21. B.A. Li, À. Ramos, G. Verde, I. Vidaña, Topical issue on nuclear symmetry energy. Eur. Phys. J. A 50, 9 (2014). https://doi.org/10.1140/epja/i2014-14009-x

    Article  Google Scholar 

  22. L.W. Chen, Symmetry energy in nucleon and quark matter. Nucl. Phys. Rev. 34, 20 (2017). https://doi.org/10.11804/NuclPhysRev.34.01.020

    Article  Google Scholar 

  23. P.B. Demorest, T. Pennucci, S.M. Ransom et al., A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–1083 (2010). https://doi.org/10.1038/nature09466

    Article  Google Scholar 

  24. J. Antoniadis, P.C.C. Freire, N. Wex et al., A massive pulsar in a compact relativistic binary. Science 340, 448 (2013). https://doi.org/10.1126/science.1233232

    Article  Google Scholar 

  25. J.M. Lattimer, A.W. Steiner, Constraints on the symmetry energy using the mass–radius relation of neutron stars. Eur. Phys. J. A 50, 40 (2014). https://doi.org/10.1140/epja/i2014-14040-y

    Article  Google Scholar 

  26. B.P. Abbott, R. Abbott, T.D. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  Google Scholar 

  27. B. Link, R.I. Epstein, J.M. Lattimer, Pulsar constraints on neutron star structure and equation of state. Phys. Rev. Lett. 83, 3362 (1999). https://doi.org/10.1103/PhysRevLett.83.3362

    Article  Google Scholar 

  28. A.W. Steiner, J.M. Lattimer, E.F. Brown, The equation of state from observed massed and radii of neutron stars. Astrophys. J. 722, 33 (2010). https://doi.org/10.1088/0004-637X/722/1/33

    Article  Google Scholar 

  29. F. Özel, D. Psaltis, T. Güver et al., The dense matter equation of state from neutron star radius and mass measurements. Astrophys. J. 820, 28 (2016). https://doi.org/10.3847/0004-637X/820/1/28

    Article  Google Scholar 

  30. S. Bogdanov, C.O. Heinke, F. Özel et al., Neutron star mass–radius constraints of the quiescent low-mass X-ray binaries X7 and X5 in the globular cluster 47 Tuc. Astrophys. J. 831, 184 (2016). https://doi.org/10.3847/0004-637X/831/2/184

    Article  Google Scholar 

  31. C.A. Raithel, F. Özel, D. Psaltis, From neutron star observations to the equation of state I. An optimal parametrization. Astrophys. J. 831, 44 (2016). https://doi.org/10.3847/0004-637X/831/1/44

    Article  Google Scholar 

  32. C.A. Raithel, F. Özel, D. Psaltis, From neutron star observations to the equation of state. II. Bayesian inference of equation of state pressures. Astrophys. J. 844, 156 (2017). https://doi.org/10.3847/1538-4357/aa7a5a

    Article  Google Scholar 

  33. A.W. Steiner, C.O. Heinke, S. Bogdanov et al., Constraining the mass and radius of neutron stars in globular clusters. Mont. Not. R. Astron. Soc. 476, 421 (2018). https://doi.org/10.1093/mnras/sty215

    Article  Google Scholar 

  34. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Neutron skins and neutron stars in the multimessenger era. Phys. Rev. Lett. 120, 172702 (2018). https://doi.org/10.1103/PhysRevLett.120.172702

    Article  Google Scholar 

  35. E.R. Most, L.R. Weih, L. Rezzolla et al., New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 120, 261103 (2018). https://doi.org/10.1103/PhysRevLett.120.261103

    Article  Google Scholar 

  36. T. Malik, N. Alam, M. Fortin, et al., GW170817: constraining the nuclear matter equation of state from the neutron star tidal deformability. arXiv:1805.11963

  37. E. Annala, T. Gorda, A. Kurkela et al., Gravitational-wave constraints on the neutron-star-matter equation of State. Phys. Rev. Lett. 120, 172703 (2018). https://doi.org/10.1103/PhysRevLett.120.172703

    Article  Google Scholar 

  38. P.G. Krastev, B.A. Li, Imprints of the nuclear symmetry energy on the tidal deformability of neutron stars. arXiv:1801.04620

  39. C. Raithel, F. Özel, D. Psaltis, GW170817: joint constraint on the neutron star equation of state from multimessenger observations. Astrophys. J. Lett. 857, L23 (2018). https://doi.org/10.3847/2041-8213/aaa402

    Article  Google Scholar 

  40. I. Tews, J. Margueron, S. Reddy, How well does GW170817 constrain the equation of state of dense matter? arXiv:1804.02783

  41. Y. Lim, J.W. Holt, Neutron star tidal deformabilities constrained by nuclear theory and experiment. Phys. Rev. Lett. 121, 062701 (2018). https://doi.org/10.1103/PhysRevLett.121.062701

    Article  Google Scholar 

  42. T. Hinderer, Tidal love numbers of neutron stars. Astrophys. J. 677, 1216 (2008). https://doi.org/10.1088/0004-637X/697/1/964

    Article  Google Scholar 

  43. T. Hinderer, B.D. Lackey, R.N. Lang et al., Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010). https://doi.org/10.1103/PhysRevD.81.123016

    Article  Google Scholar 

  44. F.J. Fattoyev, J. Carvajal, W.G. Newton et al., Constraining the high-density behavior of nuclear symmetry energy with the tidal deformability of neutron stars. Phys. Rev. C 87, 015806 (2013). https://doi.org/10.1103/PhysRevC.87.015806

    Article  Google Scholar 

  45. F.J. Fattoyev, W.G. Newton, B.A. Li, Probing the high-density behavior of symmetry energy with gravitational waves. Eur. Phys. J. A 50, 45 (2014). https://doi.org/10.1140/epja/i2014-14045-6

    Article  Google Scholar 

  46. R.F. Topper, General relativistic polytropic fluid spheres. Astrophys. J. 140, 434 (1964). https://doi.org/10.1086/147939

    Article  MathSciNet  MATH  Google Scholar 

  47. E.M. Butterworth, On the structure and stability of rapidly rotating fluid bodies in general relativity. II—the structure of uniformly rotating pseudopolytropes. Astrophys. J. 204, 561 (1976). https://doi.org/10.1086/154204

    Article  MathSciNet  Google Scholar 

  48. J.S. Read, B.D. Lackey, B.J. Owen et al., Constraints on a phenomenologically parametrized neutron-star equation of state. Phys. Rev. D 79, 124032 (2009). https://doi.org/10.1103/PhysRevD.79.124032

    Article  Google Scholar 

  49. J. Margueron, R.H. Casali, F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects. Phys. Rev. C 97, 025805 (2017). https://doi.org/10.1103/PhysRevC.97.025805

    Article  Google Scholar 

  50. J. Margueron, R.H. Casali, F. Gulminelli, Equation of state for dense nucleonic matter from metamodeling. II. Predictions for neutron star properties. Phys. Rev. C 97, 025806 (2017). https://doi.org/10.1103/PhysRevC.97.025806

    Article  Google Scholar 

  51. K. Hidemi, E. Yoshiharu, H. Izumi, Rapidly rotating general relativistic stars. I—numerical method and its application to uniformly rotating polytropes. Mont. Not. R. Astron. Soc. 237, 355–379 (1989). https://doi.org/10.1093/mnras/237.2.355

    Article  MATH  Google Scholar 

  52. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Rapidly rotating polytropes in general relativity. Astrophys. J. 422, 227 (1994). https://doi.org/10.1086/173721

    Article  Google Scholar 

  53. S. Shlomo, V.M. Kolomietz, G. Coló, Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30, 23 (2006). https://doi.org/10.1140/epja/i2006-10100-3

    Article  Google Scholar 

  54. J. Piekarewicz, Do we understand the incompressibility of neutronrich matter? J. Phys. G 37, 064038 (2010). https://doi.org/10.1088/0954-3899/37/6/064038

    Article  Google Scholar 

  55. E. Khan, J. Margueron, I. Vidaña, Constraining the nuclear equation of state at subsaturation densities. Phys. Rev. Lett. 109, 092501 (2012). https://doi.org/10.1103/PhysRevLett.109.092501

    Article  Google Scholar 

  56. B.J. Cai, L.W. Chen, Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. Nucl. Sci. Technol. 28, 185 (2017). https://doi.org/10.1007/s41365-017-0329-1

    Article  Google Scholar 

  57. N.B. Zhang, B.J. Cai, B.A. Li et al., How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas? Nucl. Sci. Technol. 28, 181 (2017). https://doi.org/10.1007/s41365-017-0336-2

    Article  Google Scholar 

  58. M. Farine, J.M. Pearson, B. Rouben, Higher-order volume-symmetry terms of the mass formula. Nucl. Phys. 304, A317–326 (1978). https://doi.org/10.1016/0375-9474(78)90241-5

    Article  Google Scholar 

  59. L.W. Chen, B.J. Cai, C.M. Ko et al., Higher-order effects on the incompressibility of isospin asymmetric nuclear matter. Phys. Rev. C 80, 014322 (2009). https://doi.org/10.1103/PhysRevC.80.014322

    Article  Google Scholar 

  60. P. Danielewicz, J. Lee, Symmetry energy I: semi-infinite matter. Nucl. Phys. 818, A36–96 (2009). https://doi.org/10.1016/j.nuclphysa.2008.11.007

    Article  Google Scholar 

  61. I. Vidaña, C. Providência, A. Polls et al., Density dependence of the nuclear symmetry energy: a microscopic perspective. Phys. Rev. C 80, 045806 (2009). https://doi.org/10.1103/PhysRevC.80.045806

    Article  Google Scholar 

  62. C. Ducoin, J. Margueron, C. Providência et al., Core-crust transition in neutron stars: predictivity of density developments. Phys. Rev. C 83, 045810 (2011). https://doi.org/10.1103/PhysRevC.83.045810

    Article  Google Scholar 

  63. C. Providência, S.S. Avancini, R. Cavagnoli et al., Imprint of the symmetry energy on the inner crust and strangeness content of neutron stars. Euro. Phys. J. A 50, 1–18 (2014). https://doi.org/10.1140/epja/i2014-14044-7

    Article  Google Scholar 

  64. C. Mondal, B.K. Agrawal, J.N. De et al., Interdependence of different symmetry energy elements. Phys. Rev. C 96, 021302(R) (2017). https://doi.org/10.1103/PhysRevC.96.021302

    Article  Google Scholar 

  65. J.W. Negele, D. Vautherin, Neutron star matter at sub-nuclear densities. Nucl. Phys. 207, A298–320 (1973). https://doi.org/10.1016/0375-9474(73)90349-7

    Article  Google Scholar 

  66. G. Baym, C.J. Pethick, P. Sutherland, The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971). https://doi.org/10.1086/151216

    Article  Google Scholar 

  67. G. Baym, H.A. Bethe, C.J. Pethick, Neutron star matter. Nucl. Phys. 175, A225–271 (1971). https://doi.org/10.1016/0375-9474(71)90281-8

    Article  Google Scholar 

  68. C.J. Pethick, D.G. Ravenhall, C.P. Lorenz, The inner boundary of a neutron-star crust. Nucl. Phys. 584, A675–703 (1995). https://doi.org/10.1016/0375-9474(94)00506-I

    Article  Google Scholar 

  69. C. Ducoin, Ph Chomaz, F. Gulminelli, Isospin-dependent clusterization of neutron-star matter. Nucl. Phys. 789, A403–425 (2007). https://doi.org/10.1016/j.nuclphysa.2007.03.006

    Article  Google Scholar 

  70. S. Kubis, Diffusive instability of a kaon condensate in neutron star matter. Phys. Rev. C 70, 065804 (2004). https://doi.org/10.1103/PhysRevC.70.065804

    Article  Google Scholar 

  71. S. Kubis, Nuclear symmetry energy and stability of matter in neutron stars. Phys. Rev. C 76, 035801 (2007). https://doi.org/10.1103/PhysRevC.76.025801

    Article  Google Scholar 

  72. J.M. Lattimer, M. Prakash, Neutron star observations: prognosis for equation of state constraints. Phys. Rep. 442, 109 (2007). https://doi.org/10.1016/j.physrep.2007.02.003

    Article  Google Scholar 

  73. R.C. Tolman, Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. U. S. A. 20, 169–176 (1934). https://doi.org/10.1073/pnas.20.3.169

    Article  MATH  Google Scholar 

  74. J. Oppenheimer, G. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939). https://doi.org/10.1103/PhysRev.55.374

    Article  MATH  Google Scholar 

  75. B.A. Li, A.W. Steiner, Constraining the radii of neutron stars with terrestrial nuclear laboratory data. Phys. Lett. 642, B436–440 (2006). https://doi.org/10.1016/j.physletb.2006.09.065

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Lie-Wen Chen, Plamen G. Krastev, Bin Qi, De-Hua Wen, and Jun Xu for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-An Li.

Additional information

NBZ was supported in part by the China Scholarship Council. BAL acknowledges the U.S. Department of Energy, Office of Science, under Award Number DE-SC0013702, the CUSTIPEN (China-U.S. Theory Institute for Physics with Exotic Nuclei) under the U.S. Department of Energy Grant No. DE-SC0009971 and the National Natural Science Foundation of China under Grant No. 11320101004.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, NB., Li, BA. Astrophysical constraints on a parametric equation of state for neutron-rich nucleonic matter. NUCL SCI TECH 29, 178 (2018). https://doi.org/10.1007/s41365-018-0515-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0515-9

Keywords

Navigation