Skip to main content

Advertisement

Log in

B4C/NRL flexible films for thermal neutron shielding

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Boron carbide/natural rubber latex (B4C/NRL) flexible films were prepared via dip-molding with B4C content in the range of 5–55 wt% for thermal neutron (0.0253 eV) shielding. B4C was well dispersed in NRL according to microscopic observation. Both the inside and outside surfaces of the film were smooth. For B4C/NRL flexible films, the minimum elongation at break was greater than 600%, the minimum tensile strength was greater than 12 MPa, and the hardness was in the range of 35–55 HA, which were suitable for preparing flexible wearable products. The attenuation efficiencies of the B4C/NRL flexible films for thermal neutrons were also calculated. The B4C/NRL flexible films exhibit good attenuation effect for thermal neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Mendelsohn, J. Strelzow, N. Dea et al., Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J. 16, 343–354 (2016). https://doi.org/10.1016/j.spinee.2015.11.020

    Article  Google Scholar 

  2. R. Madan, R. Benson, D.N. Sharma et al., Radiation induced heart disease: pathogenesis, management and review literature. J. Natl Cancer Inst. 27, 187–193 (2015). https://doi.org/10.1016/j.jnci.2015.07.005

    Article  Google Scholar 

  3. A.V. Mozhayev, R.K. Piper, B.A. Rathbone et al., Moderator design studies for a new neutron reference source based on the D-T fusion reaction. Radiat. Phys. Chem. 123, 87–96 (2016). https://doi.org/10.1016/j.radphyschem.2016.02.004

    Article  Google Scholar 

  4. M.H. Choopan, H. Khalafi, Y. Kasesaz et al., Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor. Nucl. Instrum. Methods Phys. Res., Sect. A 818, 1–8 (2016). https://doi.org/10.1016/j.nima.2016.02.040

    Article  Google Scholar 

  5. J. Valentin, The 2007 Recommendations of the International Commission on Radiological Protection (Elsevier, Amsterdam, 2007)

    Google Scholar 

  6. I. Akkurt, A. Calik, H. Akyıldırım, The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel. Nucl. Eng. Des. 241, 55–58 (2011). https://doi.org/10.1016/j.nucengdes.2010.10.009

    Article  Google Scholar 

  7. I. Akkurt, A.M. El-Khayatt, The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Eng. 51, 5–9 (2013). https://doi.org/10.1016/j.anucene.2012.08.026

    Article  Google Scholar 

  8. A.M. El-Khayatt, I. Akkurt, Photon interaction, energy absorption and neutron removal cross section of concrete including marble. Ann. Nucl. Eng. 60, 8–14 (2013). https://doi.org/10.1016/j.anucene.2013.04.021

    Article  Google Scholar 

  9. T. Piotrowski, M. Mazgaj, A. Żak et al., Importance of atomic composition and moisture content of cement based composites in neutron radiation shielding. Procedia Eng. 108, 616–623 (2015). https://doi.org/10.1016/j.proeng.2015.06.188

    Article  Google Scholar 

  10. J.J. Park, S.M. Hong, M.K. Lee et al., Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing. Nucl. Eng. Des. 282, 1–7 (2015). https://doi.org/10.1016/j.nucengdes.2014.10.020

    Article  Google Scholar 

  11. H.S. Chen, W.X. Wang, Y.L. Li et al., The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS. Mater. Des. 94, 360–367 (2016). https://doi.org/10.1016/j.matdes.2016.01.030

    Article  Google Scholar 

  12. J. Kim, J. Jun, M.K. Lee, Particle size-dependent pulverization of B4C and generation of B4C/STS nanoparticles used for neutron absorbing composites. Nucl. Eng. Technol. 46, 675–680 (2014). https://doi.org/10.5516/NET.06.2014.015

    Article  Google Scholar 

  13. M. Celli, F. Grazzi, M. Zoppi, A new ceramic material for shielding pulsed neutron scattering instruments. Nucl. Instrum. Methods Phys. Res., Sect. A 565, 861–863 (2006). https://doi.org/10.1016/j.nima.2006.05.234

    Article  Google Scholar 

  14. S.I. Tadadjeu, B.D. Ngom, M. Msimanga et al., Coatings synthesised by the pulsed laser ablation of a B4C/W2B5 ceramic composite. Thin Solid Films 593, 5–9 (2015). https://doi.org/10.1016/j.tsf.2015.09.030

    Article  Google Scholar 

  15. D. Sarıyer, R. Küçer, N. Küçer, Neutron shielding properties of concretes containing boron carbide and Ferro–Boron. Procedia Soc. Behav. Sci. 195, 1752–1756 (2015). https://doi.org/10.1016/j.sbspro.2015.06.320

    Article  Google Scholar 

  16. I. Akkurt, R. Altindag, K. Gunoglu et al., Photon attenuation coefficients of concrete including marble aggregates. Ann. Nucl. Eng. 43, 56–60 (2012). https://doi.org/10.1016/j.anucene.2011.12.031

    Article  Google Scholar 

  17. I. Akkurt, H. Akyıldırım, B. Mavi et al., Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Eng. 37, 910–914 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  Google Scholar 

  18. J. Jun, J. Kim, Y. Bae et al., Enhancement of dispersion and adhesion of B4C particles in epoxy resin using direct ultrasonic excitation. J. Nucl. Mater. 416, 293–297 (2011). https://doi.org/10.1016/j.jnucmat.2011.06.014

    Article  Google Scholar 

  19. H. Chai, X.B. Tang, M.X. Ni et al., Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J. Nucl. Mater. 464, 210–215 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.048

    Article  Google Scholar 

  20. T. Özdemir, İ.K. Akbay, H. Uzun et al., Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests. Prog. Nucl. Energy 89, 102–109 (2016). https://doi.org/10.1016/j.pnucene.2016.02.007

    Article  Google Scholar 

  21. T. Özdemir, A. Güngör, İ.A. Reyhancan, Flexible neutron shielding composite material of EPDM rubber with boron trioxide: mechanical, thermal investigations and neutron shielding tests. Radiat. Phys. Chem. 131, 7–12 (2017). https://doi.org/10.1016/j.radphyschem.2016.10.012

    Article  Google Scholar 

  22. S.E. Gwaily, M.M. Badawy, H.H. Hassan et al., Natural rubber composites as thermal neutron radiation shields: I. B4C/NR composites. Polym. Test. 21, 129–133 (2002). https://doi.org/10.1016/S0142-9418(01)00058-7

    Article  Google Scholar 

  23. S.E. Gwaily, M.M. Badawy, H.H. Hassan et al., Influence of thermal aging on crosslinking density of boron carbide/natural rubber composites. Polym. Test. 22, 3–7 (2003). https://doi.org/10.1016/S0142-9418(02)00024-7

    Article  Google Scholar 

  24. K. Ninyong, E. Wimolmala, N. Sombatsompop et al., Potential use of NR and wood/NR composites as thermal neutron shielding materials. Polym. Test. 59, 336–343 (2017). https://doi.org/10.1016/j.polymertesting.2017.02.020

    Article  Google Scholar 

  25. S. Norhazariah, A.R. Azura, R. Sivakumar et al., Effect of different preparation methods on crosslink density and mechanical properties of carrageenan filled natural rubber (NR) latex films. Procedia Chem. 19, 986–992 (2016). https://doi.org/10.1016/j.proche.2016.03.146

    Article  Google Scholar 

  26. R. Adeli, S.P. Shirmardi, S.J. Ahmadi, Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiat. Phys. Chem. 127, 140–146 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.026

    Article  Google Scholar 

  27. Y.S. Lee, W.K. Lee, S.G. Cho et al., Quantitative analysis of unknown compositions in ternary polymer blends: a model study on NR/SBR/BR system. J. Anal. Appl. Pyrolysis 78, 85–94 (2007). https://doi.org/10.1016/j.jaap.2006.05.001

    Article  Google Scholar 

  28. S.A. Riyajan, S. Chaiponban, K. Tanbumrung, Investigation of the preparation and physical properties of a novel semi-interpenetrating polymer network based on epoxised NR and PVA using maleic acid as the crosslinking agent. Chem. Eng. J. 153, 199–205 (2009). https://doi.org/10.1016/j.cej.2009.05.043

    Article  Google Scholar 

  29. E.A. Dil, M. Ghaedi, A.M. Ghaedi et al., Modeling of quaternary dyes adsorption onto ZnO–NR–AC artificial neural network: analysis by derivative spectrophotometry. J. Ind. Eng. Chem. 34, 186–197 (2016). https://doi.org/10.1016/j.jiec.2015.11.010

    Article  Google Scholar 

  30. D. Yuan, K. Chen, C. Xu et al., Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohydr. Polym. 113, 438–445 (2014). https://doi.org/10.1016/j.carbpol.2014.07.044

    Article  Google Scholar 

  31. S. Amnuaypanich, J. Patthana, P. Phinyocheep, Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water–ethanol mixtures. Chem. Eng. Sci. 64, 4908–4918 (2009). https://doi.org/10.1016/j.ces.2009.07.028

    Article  Google Scholar 

  32. S.A.M. Issa, Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 120, 33–37 (2016). https://doi.org/10.1016/j.radphyschem.2015.11.025

    Article  Google Scholar 

  33. L. Zhang, J.M. Shi, X. Lian et al., Neutron absorption properties of Al-B4C composite materials. Mater. Rev. 30, 21–30 (2016). https://doi.org/10.11896/j.issn.1005-023x.2016.16.005. (in Chinese)

    Google Scholar 

  34. Y.H. Liu, Y. Zhi, J.C. Zuo et al., Research on enhance of polyethylene composite and its thermal neutron shielding performance by borate whisker. At. Energy Sci. Technol. 49, 349–353 (2015). https://doi.org/10.7538/yzk.2015.49.02.0349

    Google Scholar 

  35. Z. Soltani, A. Beigzadeh, F. Ziaie et al., Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: experimental and simulation studies. Radiat. Phys. Chem. 127, 182–187 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Cheng Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11405149) and the Sichuan Academic and Technical Leader Program (No. DTR201501).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YC., Xu, DG. & Zhang, PC. B4C/NRL flexible films for thermal neutron shielding. NUCL SCI TECH 29, 17 (2018). https://doi.org/10.1007/s41365-018-0358-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0358-4

Keywords

Navigation