Skip to main content
Log in

Ionic liquid electrolytes in electric double layer capacitors

离子液体电解液在双电层电容器中的研究

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electric double layer capacitors (EDLCs), which store free charges on the electrode surface via non-Faradaic process, balanced by the electric double layer on the electrolyte side, exhibit excellent cycle stability and high power density. Though EDLCs are considered as promising energy storage devices, the charges stored on the electrode surface in EDLCs are much lower than those in batteries. Ionic liquids (ILs), as a new type of electrolytes in EDLCs, are capable to deliver high energy density, due to their excellent physicochemical properties and wide electrochemical window. In this review, we focus on the widely studied IL electrolytes for EDLCs, including pure ILs, IL/IL binary electrolytes, IL/organic solvent mixtures, as well as functionalized ILs, with attention on the relationship between the structures of different IL-based electrolytes and the energy storage properties in EDLCs. For imidazolium- and ammonium-based IL electrolytes which are most widely studied in EDLCs, the former generally have higher gravimetric specific capacitance, while the latter exhibit wider electrochemical window. The modifications of functional group substituted can be an effective strategy to enhance the gravimetric specific capacitance of the latter and thus improve the energy density of EDLCs.

摘要

双电层电容器(EDLCs)通过非法拉第过程在电极表面储存 自由电荷, 其通过电解质侧的双电层平衡, 具有优异的循环稳定性 和高功率密度. 虽然EDLC被认为是有前景的能量储存器件, 但其 电极表面存储的电荷远低于电池, 其较低的能量密度限制了其应 用. 离子液体(ILs), 因其较宽的电化学窗口和独特的物理化学性能, 可显著提高EDLCs的能量密度. 本文综述了纯ILs、IL/IL二元混合 体系、IL/有机溶剂混合体系以及功能化ILs等电解液, 着重探讨了 ILs的离子组成、尺寸、结构与电容的关系. 咪唑类和季铵盐类ILs 作为目前研究最广泛的两类ILs, 前者一般具有较高的重量比电容, 后者则表现出更宽的电化学窗口. 故可对季铵盐类ILs进行官能化 以提高其重量比电容, 进而提高EDLCs的能量密度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu W, Yan X, Lang J, et al. Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: Influences of organic solvents and the alkyl chains. J Mater Chem, 2011, 21: 13205–13212

    CAS  Google Scholar 

  2. Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015, 44: 7484–7539

    CAS  Google Scholar 

  3. Smith GD, Borodin O, Li L, et al. A comparison of ether- and alkyl-derivatized imidazolium-based room-temperature ionic liquids: A molecular dynamics simulation study. Phys Chem Chem Phys, 2008, 10: 6301–6312

    CAS  Google Scholar 

  4. Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nat Energy, 2016, 1: 16070

    CAS  Google Scholar 

  5. Tang J, Wang J, Shrestha LK, et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS Appl Mater Interfaces, 2017, 9: 18986–18993

    CAS  Google Scholar 

  6. Balducci A. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. J Power Sources, 2016, 326: 534–540

    CAS  Google Scholar 

  7. Pohlmann S, Olyschläger T, Goodrich P, et al. Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. J Power Sources, 2015, 273: 931–936

    CAS  Google Scholar 

  8. Pohlmann S, Olyschläger T, Goodrich P, et al. Mixtures of azepanium based ionic liquids and propylene carbonate as high voltage electrolytes for supercapacitors. Electrochim Acta, 2015, 153: 426–432

    CAS  Google Scholar 

  9. Abbas Q, Béguin F. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte. J Power Sources, 2016, 318: 235–241

    CAS  Google Scholar 

  10. Bhise SC, Awale DV, Vadiyar MM, et al. Facile synthesis of CuO nanosheets as electrode for supercapacitor with long cyclic stability in novel methyl imidazole-based ionic liquid electrolyte. J Solid State Electrochem, 2017, 21: 2585–2591

    CAS  Google Scholar 

  11. Abbas Q, Babuchowska P, Frąckowiak E, et al. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems. J Power Sources, 2016, 326: 652–659

    CAS  Google Scholar 

  12. Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937–950

    CAS  Google Scholar 

  13. Fic K, Meller M, Menzel J, et al. Around the thermodynamic limitations of supercapacitors operating in aqueous electrolytes. Electrochim Acta, 2016, 206: 496–503

    CAS  Google Scholar 

  14. Li G, Gao X, Wang K, et al. Porous carbon nanospheres with high EDLC capacitance. Diamond Related Mater, 2018, 88: 12–17

    CAS  Google Scholar 

  15. Leyva-García S, Lozano-Castelló D, Morallón E, et al. Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. J Power Sources, 2016, 336: 419–426

    Google Scholar 

  16. Klein JM, Panichi E, Gurkan B. Potential dependent capacitance of [EMIM][TFSI], [N1114][TFSI] and [PYR13][TFSI] ionic liquids on glassy carbon. Phys Chem Chem Phys, 2019, 21: 3712–3720

    CAS  Google Scholar 

  17. Lei Z, Liu Z, Wang H, et al. A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte. J Mater Chem A, 2013, 1: 2313–2321

    CAS  Google Scholar 

  18. Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche (Schluss.). Ann Phys Chem, 1853, 165: 353–377

    Google Scholar 

  19. Vu A, Li X, Phillips J, et al. Three-dimensionally ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical double-layer capacitors with ionic liquid electrolytes. Chem Mater, 2013, 25: 4137–4148

    CAS  Google Scholar 

  20. Chang P, Wang C, Kinumoto T, et al. Frame-filling C/C composite for high-performance EDLCs with high withstanding voltage. Carbon, 2018, 131: 184–192

    CAS  Google Scholar 

  21. Zhao J, Jiang Y, Fan H, et al. Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv Mater, 2017, 29: 1604569

    Google Scholar 

  22. Heckmann A, Fromm O, Rodehorst U, et al. New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree. Carbon, 2018, 131: 201–212

    CAS  Google Scholar 

  23. Chang P, Matsumura K, Wang C, et al. Frame-filling structural nanoporous carbon from amphiphilic carbonaceous mixture comprising graphite oxide. Carbon, 2016, 108: 225–233

    CAS  Google Scholar 

  24. Moreno-Fernández G, Schütter C, Rojo JM, et al. On the interaction of carbon electrodes and non conventional electrolytes in high-voltage electrochemical capacitors. J Solid State Electrochem, 2018, 22: 717–725

    Google Scholar 

  25. Zhan C, Lian C, Zhang Y, et al. Computational insights into materials and interfaces for capacitive energy storage. Adv Sci, 2017, 4: 1700059

    Google Scholar 

  26. Terasawa N. High-performance transparent actuator made from poly(dimethylsiloxane)/ionic liquid gel. Sensor Actuat B-Chem, 2018, 257: 815–819

    CAS  Google Scholar 

  27. Tooming T, Thomberg T, Kurig H, et al. High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Power Sources, 2015, 280: 667–677

    CAS  Google Scholar 

  28. Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage. Adv Mater, 2011, 23: 4828–4850

    CAS  Google Scholar 

  29. Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014, 26: 2219–2251

    Google Scholar 

  30. Dyatkin B, Osti NC, Zhang Y, et al. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces. Carbon, 2018, 129: 104–118

    CAS  Google Scholar 

  31. Jeon H, Han JH, Yu DM, et al. Synthesis of mesoporous reduced graphene oxide by Zn particles for electrodes of supercapacitor in ionic liquid electrolyte. J Indust Eng Chem, 2017, 45: 105–110

    CAS  Google Scholar 

  32. Kerisit S, Schwenzer B, Vijayakumar M. Effects of oxygen-containing functional groups on supercapacitor performance. J Phys Chem Lett, 2014, 5: 2330–2334

    CAS  Google Scholar 

  33. Phattharasupakun N, Wutthiprom J, Suktha P, et al. High-performance supercapacitors of carboxylate-modified hollow carbon nanospheres coated on flexible carbon fibre paper: Effects of oxygen-containing group contents, electrolytes and operating temperature. Electrochim Acta, 2017, 238: 64–73

    CAS  Google Scholar 

  34. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater, 2018, 61: 133–158

    CAS  Google Scholar 

  35. Wang DW, Li F, Liu M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed, 2008, 47: 373–376

    CAS  Google Scholar 

  36. Wang X, Zhou H, Sheridan E, et al. Geometrically confined favourable ion packing for high gravimetric capacitance in carbon-ionic liquid supercapacitors. Energy Environ Sci, 2016, 9: 232–239

    CAS  Google Scholar 

  37. Chapman DL. LI. A contribution to the theory of electrocapillarity. London Edinburgh Dublin Philos Mag J Sci, 1913, 25: 475–481

    Google Scholar 

  38. Gouy M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J de Phys, 1910, 9: 457–468

    CAS  Google Scholar 

  39. Gebbie MA, Smith AM, Dobbs HA, et al. Long range electrostatic forces in ionic liquids. Chem Commun, 2017, 53: 1214–1224

    CAS  Google Scholar 

  40. Lee AA, Perez-Martinez CS, Smith AM, et al. Underscreening in concentrated electrolytes. Faraday Discuss, 2017, 199: 239–259

    CAS  Google Scholar 

  41. Smith AM, Lee AA, Perkin S. The electrostatic screening length in concentrated electrolytes increases with concentration. J Phys Chem Lett, 2016, 7: 2157–2163

    CAS  Google Scholar 

  42. Feng G, Huang J, Sumpter BG, et al. A “counter-charge layer in generalized solvents” framework for electrical double layers in neat and hybrid ionic liquid electrolytes. Phys Chem Chem Phys, 2011, 13: 14723–14734

    CAS  Google Scholar 

  43. Lucio AJ, Shaw SK. Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate-polycrystalline gold interface. Anal Bioanal Chem, 2018, 410: 4575–4586

    CAS  Google Scholar 

  44. Zhan C, Zhang Y, Cummings PT, et al. Computational insight into the capacitive performance of graphene edge planes. Carbon, 2017, 116: 278–285

    CAS  Google Scholar 

  45. Wippermann K, Giffin J, Kuhri S, et al. The influence of water content in a proton-conducting ionic liquid on the double layer properties of the Pt/PIL interface. Phys Chem Chem Phys, 2017, 19: 24706–24723

    CAS  Google Scholar 

  46. Eftekhari A. The mechanism of ultrafast supercapacitors. J Mater Chem A, 2018, 6: 2866–2876

    CAS  Google Scholar 

  47. Drüschler M, Borisenko N, Wallauer J, et al. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: Slow interfacial processes and the influence of temperature on interfacial dynamics. Phys Chem Chem Phys, 2012, 14: 5090–5099

    Google Scholar 

  48. Drüschler M, Huber B, Roling B. On capacitive processes at the interface between 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111). J Phys Chem C, 2011, 115: 6802–6808

    Google Scholar 

  49. Zhang Q, Liu X, Yin L, et al. Electrochemical impedance spectroscopy on the capacitance of ionic liquid-acetonitrile electrolytes. Electrochim Acta, 2018, 270: 352–362

    CAS  Google Scholar 

  50. Roling B, Drüschler M, Huber B. Slow and fast capacitive process taking place at the ionic liquid/electrode interface. Faraday Discuss, 2012, 154: 303–311

    CAS  Google Scholar 

  51. Atkin R, Borisenko N, Drüschler M, et al. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: Potential dependent solvation layers and the herringbone reconstruction. Phys Chem Chem Phys, 2011, 13: 6849–6857

    CAS  Google Scholar 

  52. Vargas-Barbosa NM, Roling B. Time-resolved determination of the potential of zero charge at polycrystalline Au/ionic liquid interfaces. J Chem Phys, 2018, 148: 193820

    Google Scholar 

  53. Su YZ, Fu YC, Yan JW, et al. Double layer of Au(100)/ionic liquid interface and its stability in imidazolium-based ionic liquids. Angew Chem Int Ed, 2009, 48: 5148–5151

    CAS  Google Scholar 

  54. Hu X, Chen C, Yan J, et al. Electrochemical and in-situ scanning tunneling microscopy studies of bis(fluorosulfonyl)imide and bis (trifluoromethanesulfonyl)imide based ionic liquids on graphite and gold electrodes and lithium salt influence. J Power Sources, 2015, 293: 187–195

    CAS  Google Scholar 

  55. Anderson E, Grozovski V, Siinor L, et al. Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(111)|1-butyl-4-methyl-pyridinium tetrafluoroborate interface. J Electroanal Chem, 2013, 709: 46–56

    CAS  Google Scholar 

  56. Pajkossy T, Kolb DM. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate. Electrochem Commun, 2011, 13: 284–286

    CAS  Google Scholar 

  57. Li MG, Chen L, Zhong YX, et al. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—A combined in-situ scanning probe microscopy and impedance study. Electrochim Acta, 2016, 197: 282–289

    CAS  Google Scholar 

  58. Wallauer J, Drüschler M, Huber B, et al. The differential capacitance of ionic liquid/metal electrode interfaces-A critical comparison of experimental results with theoretical predictions. Z für Naturforschung B, 2013, 68: 1143–1153

    CAS  Google Scholar 

  59. Kornyshev AA. Double-layer in ionic liquids: paradigm change? J Phys Chem B, 2007, 111: 5545–5557

    CAS  Google Scholar 

  60. Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem Rev, 2014, 114: 2978–3036

    CAS  Google Scholar 

  61. Islam MM, Alam MT, Okajima T, et al. Electrical double layer structure in ionic liquids: An understanding of the unusual capacitance-potential curve at a nonmetallic electrode. J Phys Chem C, 2009, 113: 3386–3389

    CAS  Google Scholar 

  62. Bozym DJ, Uralcan B, Limmer DT, et al. Anomalous capacitance maximum of the glassy carbon-ionic liquid interface through dilution with organic solvents. J Phys Chem Lett, 2015, 6: 2644–2648

    CAS  Google Scholar 

  63. Goodwin ZAH, Feng G, Kornyshev AA. Mean-field theory of electrical double layer in ionic liquids with account of short-range correlations. Electrochim Acta, 2017, 225: 190–197

    CAS  Google Scholar 

  64. Lockett V, Horne M, Sedev R, et al. Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys Chem Chem Phys, 2010, 12: 12499–12512

    CAS  Google Scholar 

  65. Eftekhari A. On the mechanism of microporous carbon supercapacitors. Mater Today Chem, 2018, 7: 1–4

    CAS  Google Scholar 

  66. Forse AC, Merlet C, Griffin JM, et al. New perspectives on the charging mechanisms of supercapacitors. J Am Chem Soc, 2016, 138: 5731–5744

    CAS  Google Scholar 

  67. Wu P, Huang J, Meunier V, et al. Voltage dependent charge storage modes and capacity in subnanometer pores. J Phys Chem Lett, 2012, 3: 1732–1737

    CAS  Google Scholar 

  68. Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small, 2012, 8: 1805–1834

    CAS  Google Scholar 

  69. Rennie AJR, Martins VL, Smith RM, et al. Influence of particle size distribution on the performance of ionic liquid-based electrochemical double layer capacitors. Sci Rep, 2016, 6: 22062

    CAS  Google Scholar 

  70. Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 2006, 313: 1760–1763

    CAS  Google Scholar 

  71. Huang J, Sumpter BG, Meunier V. Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed, 2008, 47: 520–524

    CAS  Google Scholar 

  72. Feng G, Cummings PT. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J Phys Chem Lett, 2011, 2: 2859–2864

    CAS  Google Scholar 

  73. Huang J, Sumpter BG, Meunier V, et al. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. J Mater Res, 2011, 25: 1525–1531

    Google Scholar 

  74. Feng G, Qiao R, Huang J, et al. The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Phys Chem Chem Phys, 2011, 13: 1152–1161

    CAS  Google Scholar 

  75. Feng G, Jiang DE, Cummings PT. Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces. J Chem Theor Comput, 2012, 8: 1058–1063

    CAS  Google Scholar 

  76. Noh C, Jung YJ. Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations. Phys Chem Chem Phys, 2019, 21: 6790–6800

    CAS  Google Scholar 

  77. Liu X, Wang Y, Li S, et al. Effects of anion on the electric double layer of imidazolium-based ionic liquids on graphite electrode by molecular dynamics simulation. Electrochim Acta, 2015, 184: 164–170

    CAS  Google Scholar 

  78. Jo S, Park SW, Noh C, et al. Computer simulation study of differential capacitance and charging mechanism in graphene supercapacitors: Effects of cyano-group in ionic liquids. Electrochim Acta, 2018, 284: 577–586

    CAS  Google Scholar 

  79. Zhang L, Zhang F, Yang X, et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep, 2013, 3: 1408

    Google Scholar 

  80. DeRosa D, Higashiya S, Schulz A, et al. High performance spiro ammonium electrolyte for electric double layer capacitors. J Power Sources, 2017, 360: 41–47

    CAS  Google Scholar 

  81. Nguyen HVT, Kwak K, Lee KK. 1,1-Dimethylpyrrolidinium tetrafluoroborate as novel salt for high-voltage electric double-layer capacitors. Electrochim Acta, 2019, 299: 98–106

    CAS  Google Scholar 

  82. Yu X, Ruan D, Wu C, et al. Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. J Power Sources, 2014, 265: 309–316

    CAS  Google Scholar 

  83. Shi M, Kou S, Yan X. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions. ChemSusChem, 2014, 7: 3053–3062

    CAS  Google Scholar 

  84. Drüschler M, Huber B, Passerini S, et al. Hysteresis effects in the potential-dependent double layer capacitance of room temperature ionic liquids at a polycrystalline platinum interface. J Phys Chem C, 2010, 114: 3614–3617

    Google Scholar 

  85. El-Kady MF, Strong V, Dubin S, et al. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors. Science, 2012, 335: 1326–1330

    CAS  Google Scholar 

  86. Zhang Q, Yang H, Lang X, et al. 1-Ethyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid mixture as electrolyte for highvoltage supercapacitors. Ionics, 2019, 25: 231–239

    CAS  Google Scholar 

  87. Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541

    CAS  Google Scholar 

  88. Pohlmann S, Kühnel RS, Centeno TA, et al. The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons. ChemElectroChem, 2014, 1: 1301–1311

    CAS  Google Scholar 

  89. Schütter C, Neale AR, Wilde P, et al. The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl} imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochim Acta, 2016, 220: 146–155

    Google Scholar 

  90. Lee JH, Ryu JB, Lee AS, et al. High-voltage ionic liquid electrolytes based on ether functionalized pyrrolidinium for electric double-layer capacitors. Electrochim Acta, 2016, 222: 1847–1852

    CAS  Google Scholar 

  91. Han T, Park MS, Kim J, et al. The smallest quaternary ammonium salts with ether groups for high-performance electrochemical double layer capacitors. Chem Sci, 2016, 7: 1791–1796

    CAS  Google Scholar 

  92. Zhou ZB, Matsumoto H, Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: Synthesis, characterization, and properties. Chem Eur J, 2006, 12: 2196–2212

    CAS  Google Scholar 

  93. Rennie AJR, Sanchez-Ramirez N, Torresi RM, et al. Ether-bond-containing ionic liquids as supercapacitor electrolytes. J Phys Chem Lett, 2013, 4: 2970–2974

    CAS  Google Scholar 

  94. Huang HC, Yen YC, Chang JC, et al. An ether bridge between cations to extend the applicability of ionic liquids in electric double layer capacitors. J Mater Chem A, 2016, 4: 19160–19169

    CAS  Google Scholar 

  95. Matsumoto M, Shimizu S, Sotoike R, et al. Exceptionally high electric double layer capacitances of oligomeric ionic liquids. J Am Chem Soc, 2017, 139: 16072–16075

    CAS  Google Scholar 

  96. Lian C, Su H, Liu H, et al. Electrochemical behavior of nanoporous supercapacitors with oligomeric ionic liquids. J Phys Chem C, 2018, 122: 14402–14407

    CAS  Google Scholar 

  97. Mousavi MPS, Wilson BE, Kashefolgheta S, et al. Ionic liquids as electrolytes for electrochemical double-layer capacitors: Structures that optimize specific energy. ACS Appl Mater Interfaces, 2016, 8: 3396–3406

    CAS  Google Scholar 

  98. Wang X, Li Y, Lou F, et al. Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Adv, 2017, 7: 23859–23865

    Google Scholar 

  99. Arbizzani C, Biso M, Cericola D, et al. Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. J Power Sources, 2008, 185: 1575–1579

    CAS  Google Scholar 

  100. Wang X, Mehandzhiyski AY, Arstad B, et al. Selective charging behavior in an ionic mixture electrolyte-supercapacitor system for higher energy and power. J Am Chem Soc, 2017, 139: 18681–18687

    CAS  Google Scholar 

  101. Lian C, Liu K, Van Aken KL, et al. Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures. ACS Energy Lett, 2016, 1: 21–26

    CAS  Google Scholar 

  102. Van Aken KL, Beidaghi M, Gogotsi Y. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew Chem, 2015, 127: 4888–4891

    Google Scholar 

  103. Zhang L, Yang X, Zhang F, et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc, 2013, 135: 5921–5929

    CAS  Google Scholar 

  104. Xia J, Chen F, Li J, et al. Measurement of the quantum capacitance of graphene. Nat Nanotech, 2009, 4: 505–509

    CAS  Google Scholar 

  105. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22: 3906–3924

    CAS  Google Scholar 

  106. Pope MA, Aksay IA. Four-fold increase in the intrinsic capacitance of graphene through functionalization and lattice disorder. J Phys Chem C, 2015, 119: 20369–20378

    CAS  Google Scholar 

  107. Yadav N, Singh MK, Yadav N, et al. High performance quasisolid-state supercapacitors with peanut-shell-derived porous carbon. J Power Sources, 2018, 402: 133–146

    CAS  Google Scholar 

  108. Pal P, Ghosh A. Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids. J Power Sources, 2018, 406: 128–140

    CAS  Google Scholar 

  109. Richey FW, Dyatkin B, Gogotsi Y, et al. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. J Am Chem Soc, 2013, 135: 12818–12826

    CAS  Google Scholar 

  110. Ko J, Kim YJ, Kim YS. Self-healing polymer dielectric for a high capacitance gate insulator. ACS Appl Mater Interfaces, 2016, 8: 23854–23861

    CAS  Google Scholar 

  111. Muchakayala R, Song S, Wang J, et al. Development and super-capacitor application of ionic liquid-incorporated gel polymer electrolyte films. J Indust Eng Chem, 2018, 59: 79–89

    CAS  Google Scholar 

  112. Sato T, Marukane S, Morinaga T, et al. High voltage electric double layer capacitor using a novel solid-state polymer electrolyte. J Power Sources, 2015, 295: 108–116

    CAS  Google Scholar 

  113. Singh R, Bhattacharya B, Gupta M, et al. Electrical and structural properties of ionic liquid doped polymer gel electrolyte for dual energy storage devices. Int J Hydrogen Energy, 2017, 42: 14602–14607

    CAS  Google Scholar 

  114. Yang X, Zhang F, Zhang L, et al. A high-performance graphene oxide-doped ion gel as gel polymer electrolyte for all-solid-state supercapacitor applications. Adv Funct Mater, 2013, 23: 3353–3360

    CAS  Google Scholar 

  115. Feng L, Wang K, Zhang X, et al. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater, 2018, 28: 1704463

    Google Scholar 

  116. Pandey GP, Liu T, Hancock C, et al. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for highperformance solid-state supercapacitors. J Power Sources, 2016, 328: 510–519

    CAS  Google Scholar 

  117. Zhang X, Kar M, Mendes TC, et al. Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv Energy Mater, 2018, 8: 1702702

    Google Scholar 

  118. Jin M, Zhang Y, Yan C, et al. High-performance ionic liquid-based gel polymer electrolyte incorporating anion-trapping boron sites for all-solid-state supercapacitor application. ACS Appl Mater Interfaces, 2018, 10: 39570–39580

    CAS  Google Scholar 

  119. Ayalneh Tiruye G, Muñoz-Torrero D, Palma J, et al. All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. J Power Sources, 2015, 279: 472–480

    CAS  Google Scholar 

  120. Liu Y, Zhao J, He F, et al. Influence of alkyl spacer length on ion transport, polarization and electro-responsive electrorheological effect of self-crosslinked poly(ionic liquid)s. Polymer, 2019, 171: 161–172

    CAS  Google Scholar 

  121. Trigueiro JPC, Lavall RL, Silva GG. Supercapacitors based on modified graphene electrodes with poly(ionic liquid). J Power Sources, 2014, 256: 264–273

    CAS  Google Scholar 

  122. de Oliveira PSC, Alexandre SA, Silva GG, et al. PIL/IL gel polymer electrolytes: The influence of the IL ions on the properties of solid-state supercapacitors. Eur Polymer J, 2018, 108: 452–460

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21373118, 21573112, 21421001 and 21703108).

Author information

Authors and Affiliations

Authors

Contributions

Yin L and Yan T conceived and wrote the manuscript and designed the figures. Liu X and Li S revised the manuscript. All authors contributed to the general discussion and revision of the manuscript.

Corresponding authors

Correspondence to Xiaohong Liu  (刘晓红) or Tianying Yan  (言天英).

Additional information

Conflict of interest

The authors declare no conflict of interest.

Li Yin earned her PhD degree from Nankai University in 2018. She is currently performing postdoctoral research in the Institute of New Energy Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin. Her current research focuses on the capacitive performance of ionic liquid electrolytes applied in EDLCs.

Shu Li received her PhD degree from Nankai University (2010). She is currently a lecturer in the Institute of New Energy Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin. Her current research focuses on the IL electrolytes by molecular dynamic simulation.

Xiaohong Liu received her PhD degree from Nankai University (2016). She is currently an experimentalist in the Institute of New Energy Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin. Her current research focuses on the ILs-based electrolytes in supercapacitors.

Tianying Yan obtained his PhD degree in 2003 from Wayne State University. He carried out postdoctoral research at the University of Utah and Henry Erying. Now he is a professor in the Institute of New Energy Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin. His research interests are devoted to ILs-based storage/conversion of energy in supercapacitors combined with experimental, theoretical and simulation techniques.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Li, S., Liu, X. et al. Ionic liquid electrolytes in electric double layer capacitors. Sci. China Mater. 62, 1537–1555 (2019). https://doi.org/10.1007/s40843-019-9458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9458-3

Keywords

Navigation