Skip to main content
Log in

Two Solutions for a Class of Fractional Boundary Value Problems with Mixed Nonlinearities

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper we investigate the existence of nontrivial solutions for the following fractional boundary value problem:

$$\begin{aligned} \left\{ \begin{array}{ll} \dfrac{d}{dt}\Bigl (\dfrac{1}{2} {_0D_t^{-\beta }(u'(t))}+\dfrac{1}{2} {_tD_T^{-\beta }(u'(t))}\Bigr )+\nabla F(t,u)=0,\quad a.e.\,\, t\in [0,T], \\ u(0)=u(T)=0, \end{array} \right. \end{aligned}$$

where \(_0D_t^{-\beta }\) and \(_tD_T^{-\beta }\) are the left and right Riemann-Liouville fractional integrals of order \(0\le \beta <1\), respectively, and \(\nabla F(t,u)\) is the gradient of F(tu) at u. The novelty of this paper is that, when the nonlinearity F(tu) involves a combination of superquadratic and subquadratic terms, we present some reasonable assumptions and establish one new criterion to guarantee the existence of at least two nontrivial solutions. Recent results in the literature are generalized and significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109(3), 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14(4), 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, C.Z.: Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theory. Electron. J. Differential Equations 2012(176), 9 (2012)

    MATH  Google Scholar 

  4. Bai, Z.B., Lü, H.S.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311(2), 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  6. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000)

    Article  Google Scholar 

  7. Chen, J., and Tang, X. H.: Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory, Abstr. Appl. Anal., 2012, 21 (2012). Art. ID 648635

  8. Chen, J., Tang, X.H.: Infinitely many solutions for a class of fractional boundary value problem. Bull. Malays. Math. Sci. Soc. 36(4), 1083–1097 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Chen, J., Tang, X.H.: Infinitely many solutions for boundary value problems arising from the fractional advection dispersion equation. Appl. Math. 60(6), 703–724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Figueiredo, D.G., Gossez, J.P., Ubilla, P.: Local superlinearity and sublinearity for indefinite semilinear elliptic problems. J. Funct. Anal. 199(2), 452–467 (2003)

  11. Ferrara, M., Hadjian, A.: Variational approach to fractional boundary value problem with two control parameters. Electron. J. Differ. Equ. 2015(138), 15 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Fix, G., Roop, J.: Least squares finite-element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48(7–8), 1017–1033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilfer, R.: Applications of Fractional Calculus in Physics. World Science, Singapore (2000)

    Book  MATH  Google Scholar 

  14. Jiang, W.H.: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74(5), 1987–1994 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izydorek, M., Janczewska, J.: Homoclinic solutions for a class of the second order Hamiltonian systems. J. Differ. Equ. 219(2), 375–389 (2005)

    Article  MATH  Google Scholar 

  16. Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62(3), 1181–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kong, L.J.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013(106), 15 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies, Singapore (2006)

    Book  MATH  Google Scholar 

  19. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal. 69(8), 2677–2682 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  21. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Nyamoradi, N.: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11(1), 75–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Provodence, RI (1986)

  25. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Longhorne (1993)

    MATH  Google Scholar 

  26. Schechter, M.: Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  27. Sun, H.R., Zhang, Q.G.: Existence of solutions for a fractional boundary value problem via the Mountain Pass method and an iterative technique. Comput. Math. Appl. 64(10), 3436–3443 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xie, W.Z., Xiao, J., Luo, Z.G.: Existence of solutions for fractional boundary value problem with nonlinear derivative dependence. Abstr. Appl. Anal., Art. ID 812910, pp. 8 (2014)

  29. Zhang, S.Q.: Existence of a solution for the fractional differential equation with nonlinear boundary conditions. Comput. Math. Appl. 61(4), 1202–1208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, X.G., Liu, L.S., Wu, Y.H.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68(12), 1794–1805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Zhang.

Additional information

Communicated by Shangjiang Guo.

Project supported by the National Natural Science Foundation of China (Grant No. 11101304).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yuan, R. Two Solutions for a Class of Fractional Boundary Value Problems with Mixed Nonlinearities. Bull. Malays. Math. Sci. Soc. 41, 1233–1247 (2018). https://doi.org/10.1007/s40840-016-0386-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-016-0386-3

Keywords

Mathematics Subject Classification

Navigation