Skip to main content
Log in

Theoretical Prediction of Martensitic Transformation in Mn3Si Heusler Alloy

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

On the basis of ab initio calculations, we report the phase transformation of Mn3Si Heusler alloy from austenite to martensite structure. The total energy calculations suggest that the antiferromagnetic (AFM) spin configuration phase has the lowest energy and at a compressed volume Mn3Si becomes ferromagnetic (FM). We focus upon the distortion of the cubic Heusler structure which induces tetragonal structure with space group I4/mmm. We find out that, at c/a ratio of 1.60 and 1.38, the FM and AFM tetragonal structures become stable unlike the cubic ones. Consequently, martensitic transformation is expected to occur in both FM and AFM Mn3Si alloy. The stability of the martensite phase with respect to the austenite one is confirmed by calculating the density of states (DOS) at the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Graf T, Felser C, Parkin SPP (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 39:1

    Article  Google Scholar 

  2. Felser C, Fecher GH (2013) Spintroincs, from materials to devices. Springer, Dordrecht

    Google Scholar 

  3. Wollmann L, Chadov S, Kübler J, Felser C (2015) Magnetism in tetragonal manganese-rich Heusler compounds. Phys Rev B 92:064417

    Article  Google Scholar 

  4. Barth J, Fecher GH, Balke B, Graf T, Felser C, Shkabko A, Weidenkaff A, Klaer P, Elmers HJ, Yoshikawa H, Ueda S, Kobayashi K (2010) itinerant half-metallic ferromagnets Co2TiZ (Z = Si, Ge, Sn): Ab initio calculations and measurement of the electronic structure and transport properties. Phys Rev B 81:064404

    Article  Google Scholar 

  5. Webster PJ, Ziebeck KRA, Town SL, Peak MS (1984) Magnetic order and phase transformation in Ni2MnGa. Philos Mag B 49(3):295–310

    Article  Google Scholar 

  6. Ooiwa K, Endo K, Shinogi A (1992) Structural phase transitions and magnetism in Ni2Mn1−xVxGa and (Co1−yNiy)2NbSn. J Magn Magn Mater 104–107:2013–2014

    Google Scholar 

  7. Chernenko VA, Cesari E, Kokorin V, Vitenko I (1995) The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr Mater 33:1239–1244

    Article  Google Scholar 

  8. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett 69:1966

    Article  Google Scholar 

  9. Tickle R, James RD (1999) Magnetic and magnetomechanical properties of Ni2MnGa. J Magn Magn Mater 195:627–638

    Article  Google Scholar 

  10. Ohtsuka M, Sanada M, Matsumoto M, Itagaki K (2004) Magnetic-field induced shape memory effect in Ni2MnGa sputtered films. Mater Sci Eng A 378:377–383

    Article  Google Scholar 

  11. Chernenko VA, Besseghini S, Kanomata T, Yoshidad H, Kakeshita T (2006) Effect of high hydrostatic pressure on premartensitic transition in Ni2MnGa. Scr Mater 55:303–306

    Article  Google Scholar 

  12. Özdemir Kart KS, Uludoğan M, Karaman I, Çağin T (2008) DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa. Phys Status Solidi A 205(5):1026–1035

    Article  Google Scholar 

  13. Ravel B, Cross JO, Raphael MP, Harris VG, Ramesh R, Saraf LV (2002) Atomic disorder in Heusler Co2MnGe measured by anomalous x-ray diffraction. Appl Phys Lett 81:2812

    Article  Google Scholar 

  14. Galanakis I, Özdoğan K, Şaşıoğlu E (2008) Ab initio electronic and magnetic properties of half-metallic NiCrSi and NiMnSi Heusler alloys, the role of defects and interfaces. J Appl Phys 104:083916

    Article  Google Scholar 

  15. Gao GY, Hu L, Yao KL, Luo B, Liu N (2013) Large half-metallic gaps in the quaternary Heusler alloys CoFeCrZ (Z = Al, Si, Ga, Ge): A first-principles study. J Alloy Compd 551:539–543

    Article  Google Scholar 

  16. Yamada S, Sagar J, Honda S, Lari L, Takemoto G, Itoh H, Hirohata A, Mibu K, Miyao M, Hamaya K (2012) Room-temperature structural ordering of a Heusler compound Fe3Si. Phys Rev B 86:174406

    Article  Google Scholar 

  17. Hsu LS, Wang YK, Guo GY, Lue CS (2002) Experimental and theoretical study of the electronic structure of Fe3Al, Fe2VAl, and Fe2VGa. Phys Rev B 66:205203

    Article  Google Scholar 

  18. Pfleiderer C, Boeuf J, Löhneysen HV (2002) Stability of antiferromagnetism at high magnetic fields in Mn3Si. Phys Rev B 65:172404

    Article  Google Scholar 

  19. Zhang XM, Dai HY, Chen GF, Liu HY, Luo HZ, Li Y, Yu X, Liu GD, Wang WH, Wu GH (2012) Electronic structures and magnetism of Cr3Z (Z = Si, Ge, Sb) with DO3 structures. Comput Mater Sci 65:456–460

    Article  Google Scholar 

  20. Wurmehl S, Kandpal HC, Fecher GH, Felser C (2006) Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J Phys Condens Matter 18:6171

    Article  Google Scholar 

  21. Sugihara A, Suzuki KZ, Miyazaki T, Mizukami S (2015) Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films. J Appl Phys 117:17B511

    Article  Google Scholar 

  22. Liu ZH, Zhang YJ, Liu GD, Ding B, Liu EK, Jafri HM, Hou ZP, Wang WH, Ma XQ, Wu GH (2017) Transition from anomalous Hall effect to topological Hall effect in Hexagonal non-collinear magnet Mn3Ga. Sci Rep 7:515

    Article  Google Scholar 

  23. Tomiyoshi S, Yamaguchi Y, Ohashi M (1987) Magnetic excitations in the itinerant antiferromagnets Mn3Si and Fe-doped Mn3Si. Phys Rev B 36:2181

    Article  Google Scholar 

  24. Tomiyoshi S, Watanabe H (1975) Helical spin structure of Mn3Si. J Phys Soc Jpn 39:295–302

    Article  Google Scholar 

  25. Blaha P, Schwarz KH, Madsen GK, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria). ISBN 3-9501031-1-2

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  27. Monkhorst HJ, Park JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  28. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum espresso, a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  29. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30:244

    Article  Google Scholar 

  30. Aronsson B (1960) A note on the compositions and crystal structures of MnB2, Mn3Si, Mn5Si3, and FeSi2. Acta Chem Scand 14:1414–1418

    Article  Google Scholar 

  31. Fujii S, Ishida S, Asano S (1995) A half-metallic band structure and Fe2MnZ (Z = Al, Si, P). J Phys Soc Jpn 64:185–191

    Article  Google Scholar 

  32. Hortamani M, Sandratskii L, Zahn P, Mertig I (2009) Physical origin of the incommensurate spin spiral structure in Mn3Si. J Appl Phys 105:07E506

    Article  Google Scholar 

  33. Zhang H, Liu W, Lin T, Wang W, Liu G (2019) Phase stability and magnetic properties of Mn3Z (Z = Al, Ga, In, Tl, Ge, Sn, Pb) Heusler alloys. Appl Sci 9:964

    Article  Google Scholar 

  34. Li T, Khenata R, Cheng Z, Chen H, Yuan H, Yang T, Kuang M, Bin Omran S, Wang X (2018) Martensitic transformation, electronic structure and magnetism in D03-ordered Heusler Mn3 Z (Z = B, Al, Ga, Ge, Sb) alloys. Acta Cryst B74:673

    Google Scholar 

  35. Barman SR, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose PL, Chalke BA, Panda AK, Mitra A, Awasthi AM (2008) Theoretical prediction and experimental study of a ferromagnetic shape memory alloy Ga2MnNi. Phys Rev B 78:134406

    Article  Google Scholar 

  36. Xu JH, Oguchi T (1987) Crystal structure, phase stability, and magnetism in Ni3V. Phys Rev B 35:6940

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boukra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahla, H., Boukra, A., Kadi Allah, F. et al. Theoretical Prediction of Martensitic Transformation in Mn3Si Heusler Alloy. Shap. Mem. Superelasticity 5, 258–262 (2019). https://doi.org/10.1007/s40830-019-00232-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-019-00232-7

Keywords

Navigation