Skip to main content
Log in

Pharmacokinetic and Pharmacodynamic Drug Interactions Between Antiretrovirals and Oral Contraceptives

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

More than 50 % of women living with HIV in low- and middle-income countries are of reproductive age, but there are limitations to the administration of oral contraception for HIV-infected women receiving antiretroviral therapy due to drug–drug interactions caused by metabolism via the cytochrome P450 isoenzymes and glucuronidation. However, with the development of newer antiretrovirals that use alternative metabolic pathways, options for contraception in HIV-positive women are increasing. This paper aims to review the literature on the pharmacokinetics and pharmacodynamics of oral hormonal contraceptives when given with antiretroviral agents, including those currently used in developed countries, older ones that might still be used in salvage regimens, or those used in resource-limited settings, as well as newer drugs. Nucleos(t)ide reverse transcriptase inhibitors (NRTIs), the usual backbone to most combined antiretroviral treatments (cARTs) are characterised by a low potential for drug–drug interactions with oral contraceptives. On the other hand non-NRTIs (NNRTIs) and protease inhibitors (PIs) may interact with oral contraceptives. Of the NNRTIs, efavirenz and nevirapine have been demonstrated to cause drug–drug interactions; however, etravirine and rilpivirine appear safe to use without dose adjustment. PIs boosted with ritonavir are not recommended to be used with oral contraceptives, with the exception of boosted atazanavir which should be used with doses of at least 35 µg of estrogen. Maraviroc, an entry inhibitor, is safe for co-administration with oral contraceptives, as are the integrase inhibitors (INIs) raltegravir and dolutegravir. However, the INI elvitegravir, which is given in combination with cobicistat, requires a dose of estrogen of at least 30 µg. Despite the growing evidence in this field, data are still lacking in terms of large cohort studies, randomised trials and correlations to real clinical outcomes, such as pregnancy rates, in women on antiretrovirals and hormonal contraception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UNAIDS report on the global AIDS epidemic 2013. UNAIDS/JC2502/1/E. http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf. Accessed 26 Jul 2014.

  2. UNAIDS. Women out loud: how women living with HIV will help the world end AIDS. 2012. UNAIDS/JC2416E. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2012/20121211_Women_Out_Loud_en.pdf. Accessed 26 Jul 2014.

  3. Alkema L, Kantorova V, Menozzi C, et al. National, regional and global rates and trends in contraceptive prevalence and unmet need for family planning between 1990 and 2015: a systematic and comprehensive analysis. Lancet. 2013;381(9878):1642–52.

    Article  PubMed  Google Scholar 

  4. Writing Group, Williams I, Churchill D, et al. British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2012 (Updated November 2013. All changed text is cast in yellow highlight.). HIV Med. 2014;15(Suppl 1):1–85.

    CAS  Google Scholar 

  5. Günthard HJ, Aberg JA, Eron JJ, et al. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society—USA Panel. JAMA. 2014;312(4):410–25.

    Article  PubMed  Google Scholar 

  6. EACS treatment guidelines, version 7.02. European AIDS Clinical Society. 2014. http://eacsociety.org/Portals/0/140601_EACS%20EN7.02.pdf. Accessed 1 Aug 2014.

  7. Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol Clin North Am. 1992;21:511–26.

    CAS  PubMed  Google Scholar 

  8. Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev. 1995;27:397–417.

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Sanchez RJ, Franklin RB, et al. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinyl estradiol. Drug Metab Dispos. 2004;32(11):1209–12.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Cui D, Wang B, et al. Pharmacological drug interactions involving 17 alpha-ethinyl estradiol: a new look at an old drug. Clin Pharmacokinet. 2007;46:133–57.

    Article  CAS  PubMed  Google Scholar 

  11. Elliman A. Interactions with hormonal contraception. J Fam Plann Reprod Health Care. 2000;26:109–11.

    Article  CAS  Google Scholar 

  12. Edelman AB, Cherala G, Stancyzk FZ. Metabolism and pharmacokinetics of contraceptive steroids in obese women a review. Contraception. 2010;82(4):314–23.

    Article  CAS  PubMed  Google Scholar 

  13. Faculty of Sexual and Reproductive Healthcare clinical guidance. Drug interactions with hormonal contraception. January 2011 (updated Jan 2012). http://www.fsrh.org/pdfs/CEUGuidanceDrugInteractionsHormonal.pdf. Accessed 26 Jul 2014.

  14. Retrovir (zidovudine) product information. Research Triangle Park: GlaxoSmithKline; 1998.

  15. Zerit (stavudine) product information. Princeton: Bristol-Meyers Squibb; 1999.

  16. Epivir (lamivudine) product information. Research Triangle Park: GlaxoSmithKline; 1999.

  17. Ziagen (abacavir) product information. Research Triangle Park: GlaxoSmithKline; 2001.

  18. Videx (didanosine) product information. Princeton: Bristol-Meyers Squibb; 2000.

  19. Hivid (zalcitabine) product information. Nutley: Roche Pharmaceuticals; 2000.

  20. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998;101:289–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Eagling VE, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44:190–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Washington CB, Duran GE, Man MC, et al. Interaction of anti-HIV protease inhibitors with the multidrug transporter P-glycoprotein (P-gp) in human cultured cells. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;19:203–9.

    Article  CAS  PubMed  Google Scholar 

  23. Drewe J, Gutmann H, Fricker G, et al. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol. 1999;57:1147–52.

    Article  CAS  PubMed  Google Scholar 

  24. Foisy M, Yakiwchuk E, Hughes C. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother. 2008;42:1048–59.

    Article  CAS  PubMed  Google Scholar 

  25. Canada Abbott Laboratories Ltd. Norvir (ritonavir) prescribing information. Saint-Laurent: AbbVie Corporation; 2011.

    Google Scholar 

  26. Wang H, Tompkins L. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9(7):598–610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gilead Science. Viread® (tenofovir) summary of product characteristics. Foster City: Gilead Sciences Ltd; 2011.

    Google Scholar 

  28. Hyland R, Dickins M, Collins C, et al. Maraviroc: in vitro assessment of drug–drug interaction potential. Br J Clin Pharmacol. 2008;66(4):498–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. HIV drug interactions (University of Liverpool). http://www.hiv-druginteractions.org/. Accessed 23 Sep 2014.

  30. Aweeka F, Rosenkranz S, Yoninah S, et al. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine. AIDS. 2006;20:1833–41.

    Article  CAS  PubMed  Google Scholar 

  31. Kearney BP, Mathias A. Lack of effect of tenofovir disoproxil fumarate on pharmacokinetics of hormonal contraceptives. Pharmacotherapy. 2009;29(8):924–9.

    Article  CAS  PubMed  Google Scholar 

  32. Mildvan D, Yarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr. 2002;29:471–7.

    Article  CAS  PubMed  Google Scholar 

  33. Boehringer Ingelheim International. Viramune summary of product characteristics. Ingelheim am Rhein: Boehringer Ingelheim International GmbH; 2001.

  34. Landolt N, Phanuphak N, Ubolyam S, et al. Efavirenz, in contrast to nevirapine, is associated with unfavorable progesterone and antiretroviral levels when coadministered with combined oral contraceptives. J Acquir Immune Defic Syndr. 2013;62:534–9.

    Article  CAS  PubMed  Google Scholar 

  35. Stuart G, Moses A, Corbett A, et al. Combined oral contraceptives and antiretroviral PK/PD in Malawian women: pharmacokinetics and pharmacodynamics of a combined oral contraceptive and a generic combined formulation antiretroviral in Malawi. J Acquir Immune Defic Syndr. 2011;58(2):40–3.

    Article  Google Scholar 

  36. Nanda K, Delany-Moretlwe S, Dubé K, et al. Nevirapine-based antiretroviral therapy does not reduce oral contraceptive effectiveness. AIDS. 2013;27:S17–25.

    Article  CAS  PubMed  Google Scholar 

  37. Joshi AS, Fiske WD, Benedek IH, et al. Lack of a pharmacokinetic interaction between efavirenz (DMP 266) and ethinyl estradiol in healthy female volunteers [abstract no. 348]. 5th Conference on Retroviruses and Opportunistic Infections; 1–5 Feb 1998; Chicago.

  38. Sinicco A, Raiteri R, Rossati A, et al. Efavirenz interference in estradiol ELISA assay. Clin Chem. 2000;46:734–5.

    CAS  PubMed  Google Scholar 

  39. Sevinsky H, Eley T, Persson A, et al. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther. 2011;16:149–56.

    Article  CAS  PubMed  Google Scholar 

  40. Schöller-Gyüre M, Kakuda T, Woodfall B, et al. Effect of steady-state etravirine on the pharmacokinetics and pharmacodynamics of ethinyl estradiol and norethindrone. Contraception. 2009;80:44–52.

    Article  PubMed  Google Scholar 

  41. Crauwels HM, van Heeswijk RP, Buelens A, et al. Lack of an effect of rilpivirine on the pharmacokinetics of ethinyl estradiol and norethindrone in healthy volunteers. Int J Clin Pharmacol Ther. 2014;52:118–28.

    Article  CAS  PubMed  Google Scholar 

  42. Winston A, Boffito M. The management of HIV-1 protease inhibitor pharmacokinetic interactions. J Antimicrob Chemother. 2005;56:1–5.

    Article  CAS  PubMed  Google Scholar 

  43. Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol. 1998;46:111–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tackett D, Child M, Agarwala S, et al. Atazanavir: a summary of two pharmacokinetic drug interaction studies in healthy subjects [abstract no. 543]. 10th Conference on Retrovirus and Opportunistic Infections; 10–14 Feb 2003; Boston.

  45. Zhang J, Chung E, Yones C, et al. The effect of atazanavir/ritonavir on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy women. Antivir Ther. 2011;16:157–64.

    Article  CAS  PubMed  Google Scholar 

  46. Atrio J, Stanczyk FZ, Neely M, et al. Effect of protease inhibitors on steady-state pharmacokinetics of oral norethindrone contraception in HIV-infected women. J Acquir Immune Defic Syndr. 2014;65:72–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sekar VJ, Lefebvre E, Guzman SS, et al. Pharmacokinetic interaction between ethinyl estradiol, norethindrone and darunavir with low-dose ritonavir in healthy women. Antivir Ther. 2008;134:563–9.

    Google Scholar 

  48. Vogler MA, Patterson K, Kamemoto L, et al. Contraceptive efficacy of oral and transdermal hormones when co-administered with protease inhibitors in HIV-1-infected women: pharmacokinetic results of ACTG trial A5188. J Acquir Immune Defic Syndr. 2010;55:473–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Abel S, Russell D, Whitlock LA, et al. Effect of maraviroc on the pharmacokinetics of midazolam, lamivudine/zidovudine, and ethinyl estradiol/levonorgestrel in healthy volunteers. Br J Clin Pharmacol. 2008;65(Suppl 1):19–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Anderson MS, Hanley WD, Moreau AR, et al. Effect of raltegravir on estradiol and norgestimate plasma pharmacokinetics following oral contraceptive administration in healthy women. Br J Clin Pharmacol. 2011;71:616–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. German P, Wang M, Warren D, Kearney PB. Pharmacokinetic interaction between norgestimate/ethinyl estradiol and EVG/COB/FTC/TDF single tablet regimen [abstract no. 17]. 12th International Workshop on Clinical Pharmacology of HIV therapy; 13–15 Apr 2011; Miami.

  52. Song I, Mark S, Borlan J, et al. Dolutegravir has no effect on the pharmacokinetics of methadone or oral contraceptives with norgestimate and ethinyl estradiol. 20th Conference on Retroviruses and Opportunistic Infections; 3–6 Mar 2013; Atlanta.

  53. Marions L, Hultenby K, Sun X, et al. Emergency contraception with mifepristone and levonorgestrel: mechanism of action. Obstet Gynecol. 2002;100:65–71.

    Article  CAS  PubMed  Google Scholar 

  54. Croxatto HB, Brache V, Pavez M, et al. Pituitary-ovarian function following the standard levonorgestrel emergency contraceptive dose or a single 0.75-mg dose given on the days preceding ovulation. Contraception. 2004;70:442–50.

    Article  CAS  PubMed  Google Scholar 

  55. Hapangama D, Glasier AF, Baird DT. The effects of peri-ovulatory administration of levonorgestrel on the menstrual cycle. Contraception. 2001;63:123–9.

    Article  CAS  PubMed  Google Scholar 

  56. Durand M, del Carmen Cravioto M, Raymond EG, et al. On the mechanisms of short-term levonorgestrel administration in emergency contraception. Contraception. 2001;64:227–34.

    Article  CAS  PubMed  Google Scholar 

  57. Marions L, Cekan SZ, Bygdeman M, Gemzell-Danielsson K. Effect of emergency contraception with levonorgestrel or mifepristone on ovarian function. Contraception. 2004;69:373–7.

    Article  CAS  PubMed  Google Scholar 

  58. Okewole IA, Arowojolu AO, Odusoga OL, et al. Effect of a single administration of levonorgestrel on the menstrual cycle. Contraception. 2007;75:372–7.

    Article  CAS  PubMed  Google Scholar 

  59. Stratton P, Hartog B, Hajizadeh N, et al. A single mid-follicular dose of CDB-2914, a new antiprogestin, inhibits folliculogenesis and endometrial differentiation in normally cycling women. Hum Reprod. 2000;15:1092–9.

    Article  CAS  PubMed  Google Scholar 

  60. Croxatto HB, Brache V, Cochon L, et al. The effects of immediate pre-ovulatory administration of 30 mg ulipristal acetate on follicular rupture [abstract]. 8th Congress of the European Society of Gynecology; 10–13 Sep 2009; Rome.

  61. Stratton P, Levens ED, Hartog B, et al. Endometrial effects of a single early luteal dose of the selective progesterone receptor modulator CDB-2914. Fertil Steril. 2010;93(6):2035–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Carten ML, Kiser JJ, Kwara A, et al. Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and efavirenz. Infect Dis Obstet Gynecol. 2012;2012:137192. doi:10.1155/2012/137192.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ella One (ulipristal) product information. Paris: HRA Pharma; 2009.

  64. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Recommendations for a public health approach. World Health Organization. 2013. http://www.who.int/hiv/pub/guidelines/arv2013/download/en. Accessed 4 Aug 2014.

  65. Merck. Cerazette: summary of product characteristics. Hoddesdon: Merck; 2007.

  66. Desogen (desogestrel/ethinyl estradiol) prescribing information. Whitehouse Station: Merck; 2012.

  67. Bachmann G, Kopacz S. Drospirenone/ethinyl estradiol 3 mg/20 μg (24/4 day regimen): hormonal contraceptive choices—use of a fourth-generation progestin. Patient Prefer Adherence. 2009;3:259–64.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Yasmin (drospirenone/ethinyl estradiol) tablets prescribing information. Wayne: Bayer HealthCare Pharmaceuticals Inc.; 2012.

  69. Yaz (drospirenone/ethinyl estradiol) tablets prescribing information. Wayne: Bayer HealthCare Pharmaceuticals Inc.; 2012.

  70. Nexplanon. Summary of product characteristics. Hoddesdon: Merck; 1999.

  71. Maddox D, Rahman Z. Etonogestrel (Implanon), another treatment option for contraception. Pharm Ther. 2008;33(6):337–47.

    Google Scholar 

  72. Wenzl R, van Beek A, Schnabel P, Huber J. Pharmacokinetics of etonogestrel released from the contraceptive implant Implanon. Contraception. 1998;58(5):283–8.

    Article  CAS  PubMed  Google Scholar 

  73. Guengerich FP. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chem Res Toxicol. 1990;3:363–71.

    Article  CAS  PubMed  Google Scholar 

  74. Back DJ, Houlgrave R, Tjia JF, et al. Effect of the progestogens, gestodene, 3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyl estradiol and other substrates by human liver microsomes. J Steroid Biochem Mol Biol. 1991;38:219–25.

    Article  CAS  PubMed  Google Scholar 

  75. Femodene: summary of product characteristics. Newbury: Bayer Pharmaceuticals; 2008.

  76. Levonelle: summary of product characteristics. Newbury: Bayer Pharmaceuticals;. 2004.

  77. Norethisterone: summary of product characteristics. Wrexham: Wockhardt; 2008.

  78. Back D, Beckenridge A, Crawford F, MacIver M, Orme M, Rowe P, Smith E. Pharmacokinetics or norethindrone in women. Clin Pharmacol Ther. 1978;24:447–54.

    Google Scholar 

  79. Cilest: summary of product characteristics. High Wycombe: Janssen; 1995.

  80. Weiss J, Rose J, Storch CH, et al. Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother. 2007;59(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  81. Weiss J, Theile D, Ketabi-Kiyanvash N, et al. Inhibition of MRP1/ABCC1, MRP2/ABCC2 and MRP3/ABCC3 by nucleoside, nucleotide and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos. 2007;35(3):340–4.

    Article  CAS  PubMed  Google Scholar 

  82. Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35(11):2076–85.

    Article  CAS  PubMed  Google Scholar 

  83. Pan G, Giri N, Elmquist W. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007;35(7):1165–73.

    Article  CAS  PubMed  Google Scholar 

  84. Nakatani-Freshwater T, Taft DR. Renal excretion of emtricitabine I: effects of organic anion, organic cation, and nucleoside transport inhibitors on emtricitabine excretion. J Pharm Sci. 2008;97(12):5401–10.

    Article  CAS  PubMed  Google Scholar 

  85. Turriziani O, Schuetz JD, Focher F, et al. Impaired 2′,3′-dideoxy-3′-thiacytidine accumulation in T-lymphoblastoid cells as a mechanism of acquired resistance independent of multidrug resistant protein 4 with a possible role for ATP-binding cassette C11. Biochem J. 2002;368(Pt 1):325–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. FDA. Rilpivirine clinical pharmacology and biopharmaceutics review (NDA202-022). http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000TOC.cfm. Accessed 23 Sep 2014.

  87. Tirona R, Leake B, Wolkoff AW, Kim RB. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampicin mediated pregnane X receptor activation. J Pharmacol Exp Ther. 2003;304(1):223–8.

    Article  CAS  PubMed  Google Scholar 

  88. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310(1):334–41.

    Article  CAS  PubMed  Google Scholar 

  89. Thomas S. Drug transporters relevant to HIV therapy. J HIV Ther. 2004;9(4):92–6.

    CAS  PubMed  Google Scholar 

  90. Srinivas R, Middlemas D, Flynn P, Fridland A. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother. 1998;42(12):3157–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bousquet L, Roucairol C. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood–brain barrier. AIDS Res Hum Retroviruses. 2008;24(9):1147–54.

    Article  CAS  PubMed  Google Scholar 

  92. Lucia MB, Golotta C, Rutella S, et al. Atazanavir inhibits P-glycoprotein and multi-drug resistance-associated protein efflux activity. J Acquir Immune Defic Syndr. 2005;39(5):635–7.

    CAS  PubMed  Google Scholar 

  93. Ye Z, Augustijns P, Annaert P. Cellular accumulation of cholyl-glycylamido-fluorescein in sandwich-cultured rat hepatocytes: kinetic characterization, transport mechanisms, and effect of human immunodeficiency virus protease inhibitors. Drug Metab Dispos. 2008;36(7):1315–21.

    Article  CAS  PubMed  Google Scholar 

  94. Rittweger M, Arasteh K. Clinical pharmacokinetics of darunavir. Clin Pharmacokinet. 2007;46(9):739–56.

    Article  CAS  PubMed  Google Scholar 

  95. Janneh O, Hartkoorn RC, Jones E, et al. Cultured CD4 T cells and primary human lymphocytes express hOATPs: intracellular accumulation of saquinavir and lopinavir. Br J Pharmacol. 2008;155(6):875–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Marta Boffito has received travel and research grants from and has been an adviser for Janssen, Roche, Pfizer, ViiV, Bristol-Myers Squibb, Merck Sharp and Dohme, Boehringer Ingelheim, AbbieVie and Gilead. Lauren Bull has received sponsorship from Gilead to attend the BASHH (British Association for Sexual Health and HIV) conference in 2012 and BHIVA (British HIV Association) 2013, and received sponsorship from Janssen to attend the BASHH conference in 2013. Victoria Tittle has received payment by Gilead for organising an educational evening for junior doctors, and sponsorship from Gilead to attend BHIVA 2012 and EACS (European AIDS Clinical Society) 2011. Nneka Nwokolo has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Tittle.

Additional information

V. Tittle and L. Bull are joint first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tittle, V., Bull, L., Boffito, M. et al. Pharmacokinetic and Pharmacodynamic Drug Interactions Between Antiretrovirals and Oral Contraceptives. Clin Pharmacokinet 54, 23–34 (2015). https://doi.org/10.1007/s40262-014-0204-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0204-8

Keywords

Navigation