Skip to main content
Log in

Pegylation of Biological Molecules and Potential Benefits: Pharmacological Properties of Certolizumab Pegol

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

PEGylation of biological proteins, defined as the covalent conjugation of proteins with polyethylene glycol (PEG), leads to a number of biopharmaceutical improvements, including increased half-life, increased solubility and reduced aggregation, and reduced immunogenicity. Since their introduction in 1990, PEGylated proteins have significantly improved the management of various chronic diseases, including rheumatoid arthritis (RA) and Crohn’s disease. Certolizumab pegol is the only PEGylated anti-tumour necrosis factor (TNF)-α agent. It is a PEGylated, humanised, antigen-binding fragment of an anti-TNF monoclonal antibody. Unlike other anti-TNF agents, it has no crystallisable fragment (Fc) domain. Because of its novel structure, certolizumab pegol may have a different mechanism of action to the other anti-TNF agents, and also has different pharmacodynamic properties, which could possibly translate to a different safety profile. Pharmacodynamic studies have shown that certolizumab pegol binds to TNF with a higher affinity than adalimumab and infliximab. Certolizumab pegol is also more potent at neutralising soluble TNF-mediated signalling than adalimumab and infliximab, and has similar or lesser potency to etanercept. Certolizumab pegol does not cause detrimental in vitro effects such as degranulation, loss of cell integrity, apoptosis, complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity. Certolizumab pegol may also penetrate more effectively into inflamed arthritic tissue than other anti-TNF agents, and is not actively transported across the placenta during pregnancy. Pharmacokinetic studies in healthy volunteers demonstrated that single intravenous and subcutaneous doses of certolizumab pegol had predictable pharmacokinetics. The pharmacokinetics of certolizumab pegol in patients with RA and Crohn’s disease were consistent with pharmacokinetics in healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–72.

    Article  PubMed  CAS  Google Scholar 

  2. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem. 2006;17(3):618–30.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman AP. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliv Rev. 2002;54(4):531–45.

    Article  PubMed  CAS  Google Scholar 

  4. Dhalluin C, Ross A, Leuthold LA, Foser S, Gsell B, Muller F, et al. Structural and biophysical characterization of the 40 kDa PEG-interferon-alpha2a and its individual positional isomers. Bioconjug Chem. 2005;16(3):504–17.

    Article  PubMed  CAS  Google Scholar 

  5. Pasut G, Veronese FM. PEGylation for improving the effectiveness of therapeutic biomolecules. Drugs Today (Barc). 2009;45(9):687–95.

    Article  CAS  Google Scholar 

  6. Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29.

    Article  PubMed  CAS  Google Scholar 

  7. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci. 2008;97(10):4167–83.

    Article  PubMed  CAS  Google Scholar 

  8. Pasut G, Mero A, Caboi F, Scaramuzza S, Sollai L, Veronese FM. A new PEG-beta-alanine active derivative for releasable protein conjugation. Bioconjug Chem. 2008;19(12):2427–31.

    Article  PubMed  CAS  Google Scholar 

  9. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110(1):103–11.

    Article  PubMed  Google Scholar 

  10. Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehrig CD, Huang W, et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum. 2007;56(3):1021–8.

    Article  PubMed  CAS  Google Scholar 

  11. Schellekens H, Hennink WE, Brinks V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res. 2013;30(7):1729–34.

    Article  PubMed  CAS  Google Scholar 

  12. Koide H, Asai T, Kato H, Ando H, Shiraishi K, Yokoyama M, et al. Size-dependent induction of accelerated blood clearance phenomenon by repeated injections of polymeric micelles. Int J Pharm. 2012;432(1–2):75–9.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang C, Fan K, Ma X, Wei D. Impact of large aggregated uricases and PEG diol on accelerated blood clearance of PEGylated canine uricase. PLoS One. 2012;7(6):e39659.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Matsuda F, Torii Y, Enomoto H, Kuga C, Aizawa N, Iwata Y, et al. Anti-interferon-alpha neutralizing antibody is associated with nonresponse to pegylated interferon-alpha plus ribavirin in chronic hepatitis C. J Viral Hepat. 2012;19(10):694–703.

    Article  PubMed  CAS  Google Scholar 

  15. Strand V, Khanna D, Singh JA, Forsythe A, Edwards NL. Improved health-related quality of life and physical function in patients with refractory chronic gout following treatment with pegloticase: evidence from phase III randomized controlled trials. J Rheumatol. 2012;39(7):1450–7.

    Article  PubMed  CAS  Google Scholar 

  16. Bell EA, Wall GC. Pediatric constipation therapy using guidelines and polyethylene glycol 3350. Ann Pharmacother. 2004;38(4):686–93.

    Article  PubMed  Google Scholar 

  17. Pashankar DS, Uc A, Bishop WP. Polyethylene glycol 3350 without electrolytes: a new safe, effective, and palatable bowel preparation for colonoscopy in children. J Pediatr. 2004;144(3):358–62.

    Article  PubMed  CAS  Google Scholar 

  18. Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2007;35(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  19. Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994;83(4):601–6.

    Article  PubMed  CAS  Google Scholar 

  20. Pasut G, Veronese FM. Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32(8–9):933–61.

    Article  CAS  Google Scholar 

  21. Goel N, Stephens S. Certolizumab pegol. MAbs. 2010;2(2):137–47.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Weir N, Athwal D, Brown D, Foulkes R, Kollias G, Nesbitt A, et al. A new generation of high-affinity humanized PEGylated Fab’ fragment anti-tumor necrosis factor-alpha monoclonal antibodies. Therapy. 2006;3(4):535–45.

    CAS  Google Scholar 

  23. Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs. 2009;23(2):93–109.

    Article  PubMed  CAS  Google Scholar 

  24. Gramlick A, Fossati G, Nesbitt AM. Neutralization of soluble and membrane tumor necrosis factor-α (TNF-α) by infliximab, adalimumab, or certolizumab pegol using P55 or P75 TNF-α receptor-specific bioassays. Gastroenterology. 2006;130(4 Suppl. 2):A697.

    Google Scholar 

  25. Nesbitt A, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R, et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis. 2007;13(11):1323–32.

    Article  PubMed  Google Scholar 

  26. Meroni P-L, Valensini G. Tumour necrosis factor α antagonists in the treatment of rheumatoid arthritis: an immunological perspective. BioDrugs. 2013. doi:10.1007/s40259-013-0063-0.

    Google Scholar 

  27. Bourne T, Fossati G, Nesbitt A. A PEGylated Fab’ fragment against tumor necrosis factor for the treatment of Crohn disease: exploring a new mechanism of action. BioDrugs. 2008;22(5):331–7.

    Article  PubMed  CAS  Google Scholar 

  28. Wolf D, Mahadevan U. Certolizumab pegol use in pregnancy: low levels detected in cord blood [abstract]. Arthritis Rheum. 2010;62(Suppl. 10):718.

    Google Scholar 

  29. Mahadevan U, Miller JK, Wolf DC. Adalimumab levels detected in cord blood and infants exposed in utero [abstract no. 277]. Gastroenterology. 2011;140(5 Suppl. 1):S61–2.

    Google Scholar 

  30. Mahadevan U, Terdiman JP, Church J, Vasiliauskas E, Gitis A, Dubinsky MC. Infliximab levels in infants born to women with inflammatory bowel disease [abstract no. 959]. Gastroenterology. 2007;132(4 Suppl. 1):A144.

    Google Scholar 

  31. Nesbitt AM, Henry AJ. High affinity and potency of the PEGylated Fab’ fragment CDP870—a direct comparison with other anti-TNF agents [abstract]. Gut. 2004;53(Suppl. 6):A47.

    Google Scholar 

  32. Lamour S, Bracher M, Nesbitt A. Effect of the peg component of certolizumab pegol on stimulated mast cell degranulation [abstract]. Gut. 2009;58(Suppl. III):A305.

  33. van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):164–72.

    Article  PubMed  Google Scholar 

  34. Bendtzen K, Geborek P, Svenson M, Larsson L, Kapetanovic MC, Saxne T. Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum. 2006;54(12):3782–9.

    Article  PubMed  CAS  Google Scholar 

  35. Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. Epub 2012 Dec 6.

  36. Vincent FB, Morand EF, Murphy K, Mackay F, Mariette X, Marcelli C. Antidrug antibodies (ADAb) to tumour necrosis factor (TNF)-specific neutralising agents in chronic inflammatory diseases: a real issue, a clinical perspective. Ann Rheum Dis. 2013;72(2):165–78.

    Article  PubMed  CAS  Google Scholar 

  37. Krieckaert CL, Nurmohamed MT, Wolbink GJ. Methotrexate reduces immunogenicity in adalimumab treated rheumatoid arthritis patients in a dose dependent manner. Ann Rheum Dis. 2012;71(11):1914–5.

    Article  PubMed  CAS  Google Scholar 

  38. Plasencia C, Pascual-Salcedo D, Nuno L, Bonilla G, Villalba A, Peiteado D, et al. Influence of immunogenicity on the efficacy of longterm treatment of spondyloarthritis with infliximab. Ann Rheum Dis. 2012;71(12):1955–60.

    Article  PubMed  CAS  Google Scholar 

  39. Barnes T, Moots R. Targeting nanomedicines in the treatment of rheumatoid arthritis: focus on certolizumab pegol. Int J Nanomed. 2007;2(1):3–7.

    Article  CAS  Google Scholar 

  40. Vetterlein O, Kopotsha T, Nesbitt A, Brown D, Stephens S. In patients with rheumatoid arthritis treated with the anti-TNF certolizumab pegol or infliximab, antibodies produced do not cross react with other reagents [poster no. THU0121]. European League Against Rheumatism (EULAR); 13–16 Jun 2007; Barcelona.

  41. Lacroix BD, Lovern MR, Stockis A, Sargentini-Maier ML, Karlsson MO, Friberg LE. A pharmacodynamic Markov mixed-effects model for determining the effect of exposure to certolizumab pegol on the ACR20 score in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2009;86(4):387–95.

    Article  PubMed  CAS  Google Scholar 

  42. Punzi L, Lapadula G, Mathieu A. Efficacy and safety of certolizumab pegol in rheumatoid arthritis: meeting rheumatologists’ requirements in routine clinical practice. BioDrugs. 2013. doi:10.1007/s40259-013-0065-y

  43. UCB Inc. Cimzia (certolizumab pegol) prescribing information. Smyrna (GA): UBC, Inc.; 2011. http://www.cimzia.com/pdf/Prescribing_Information.pdf. Accessed 30 May 2013.

  44. Parton A, King L, Parker G, Nesbitt A. The PEG moiety of certolizumab pegol is rapidly cleared from the blood of humans by the kidneys once it is cleaved from the Fab’ [abstract no. THU0051]. Ann Rheum Dis. 2009;68(Suppl. 3):189.

    Google Scholar 

  45. Choy EH, Hazleman B, Smith M, Moss K, Lisi L, Scott DG, et al. Efficacy of a novel PEGylated humanized anti-TNF fragment (CDP870) in patients with rheumatoid arthritis: a phase II double-blinded, randomized, dose-escalating trial. Rheumatology. 2002;41(10):1133–7.

    Article  PubMed  CAS  Google Scholar 

  46. Palframan R, Airey M, Moore A, Vugler A, Nesbitt A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J Immunol Methods. 2009;348(1–2):36–41.

    Article  PubMed  CAS  Google Scholar 

  47. Simister NE, Story CM, Chen HL, Hunt JS. An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur J Immunol. 1996;26(7):1527–31.

    Article  PubMed  CAS  Google Scholar 

  48. Nesbitt AM, Brown DT, Stephens S, Foulkes R. Placental transfer and accumulation in milk of the anti-TNF antibody TN3 in rats: immunoglobulin G1 versus PEGylated Fab’ [abstract]. Am J Gastroenterol. 2006;101(Suppl. 2):S438.

    Google Scholar 

  49. Immunex Corporation. Enbrel (etanercept) prescribing information. 2011. http://pi.amgen.com/united_states/enbrel/derm/enbrel_pi.pdf. Accessed 30 May 2013.

Download references

Acknowledgments

This manuscript was prepared with financial assistance from UCB Pharma SpA, Milan, Italy. The author would like to thank David Murdoch and Lucy Whitehouse of inScience Communications, Springer Healthcare, who provided medical writing support funded by UCB Pharma SpA. Assistance with post-submission requirements was provided by Sheridan Henness, PhD, inScience Communications, Springer Healthcare. This article was published in a supplement sponsored by UCB Pharma SpA, Italy. The supplement was guest edited by Daniel Aletaha and peer reviewed by Leonard H. Calabrese who both received a small honorarium from Springer Healthcare to cover out-of-pocket expenses. D.A. has received honoraria and research grants from UCB, and honoraria from Abbvie, Grünenthal, Janssen, Merck, Medac, Mitsubishi Tanabe, Pfizer, AstraZeneca, Eli Lilly, Novo Nordisk, and Sanofi/Regeneron. L.H.C. has consulted for UCB, Roche, Janssen, Pfizer and BMS.

Conflict of interest

The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pasut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasut, G. Pegylation of Biological Molecules and Potential Benefits: Pharmacological Properties of Certolizumab Pegol. BioDrugs 28 (Suppl 1), 15–23 (2014). https://doi.org/10.1007/s40259-013-0064-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0064-z

Keywords

Navigation