Skip to main content

Advertisement

Log in

Effect of Cold Rolling Parameters on the Longitudinal Residual Stress Distribution of GH4169 Alloy Sheet

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

For plastic deformed parts, the dimensional accuracy is significantly affected by residual stresses and so does the performance in service. Therefore, the rolling process of GH4169 alloy sheet at room temperature was investigated by finite element method. The effects of rolling reduction, friction coefficient, rolling velocity and initial stress on the longitudinal residual stress distribution over the thickness of GH4169 alloy sheet were analyzed. The results show that the values of longitudinal residual stress can be slightly reduced by increasing the rolling reduction and velocity. The longitudinal residual stress over the thickness distributes as “V” type or weak “W” type. The initial stress mainly has an effect on the longitudinal stress in the backward slip area. But the friction coefficient has remarkable influence on longitudinal residual stress. With the friction coefficient increasing from 0.1 to 0.5, the value of longitudinal residual stress on the sheet surface is reduced by 282 MPa. Simultaneously, the tensile stress turns into compressive stress with a strong “W” type distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Geddes, H. Leon, X. Huang, Superalloys Alloying and Performance (ASM International, Materials Park, OH, 2010)

    Google Scholar 

  2. Q.A. Tai, H. Guan, Z.X. Guo, S.L. Li, Z.Q. Chen, W. Wang, J. Iron Steel Res. 23(S2), 174 (2009). (in Chinese)

    Google Scholar 

  3. W. Zhuang, Q. Liu, R. Djugum, P.K. Sharp, A. Pardowsha, Appl. Surf. Sci. 320, 558 (2014)

    Article  Google Scholar 

  4. H. Zuo, Y. Feng, Acta Mech. Solid Sin. 25, 100 (2012)

    Article  Google Scholar 

  5. M.N. James, M. Newby, D.G. Hattingh, A. Steuwer, Procedia Eng. 2, 441 (2010)

    Article  Google Scholar 

  6. W.F. He, Y.H. Li, W. Li, Y.Q. Li, Q.P. Li, J. Aerosp. Power 26, 1551 (2011). (in Chinese)

    Google Scholar 

  7. X.D. Wang, Q.P. Li, X. Zhou, C.L. Tong, Y.J. Hu, China Surf. Eng. 2012(02), 75 (2012). (in Chinese)

    Google Scholar 

  8. Y.K. Zhang, J.Z. Lu, X.D. Ren, H.B. Yao, H.X. Yao, Mater. Des. 30, 1697 (2009)

    Article  Google Scholar 

  9. L. Shi, D.S. Wei, Y.R. Wang, J. Aerosp. Power 28, 1236 (2013). (in Chinese)

    Google Scholar 

  10. Y.R. Wang, H.B. Li, S.H. Yuan, D.S. Wei, L. Shi, J. Aerosp. Power 28, 1208 (2013). (in Chinese)

    Google Scholar 

  11. M. Beghini, L. Bertini, B.D. Monelli, C. Santus, M. Bandini, Surf. Coat. Technol. 254, 175 (2014)

    Article  Google Scholar 

  12. L.L. Zhao, Y.D. Zhang, Nonferr. Met. 57, 27 (2005)

    Google Scholar 

  13. B. Li, Q.D. Zhang, X.F. Zhang, J. Plast. Eng. 20(5), 65 (2013). (in Chinese)

    Google Scholar 

  14. H.M. Mao, Dissertation, Inner Mongolia University of Science and Technology, 2010 (in Chinese)

  15. L. Zheng, L.C. Che, J. Zhang, P.C. Zhang, C.G. He, Z.K. Peng, Y. Xiao, X.H. Feng, L. Zhu, J. Netshape Form. Eng. 6(5), 50 (2014). (in Chinese)

    Google Scholar 

  16. L. Zheng, J. Zhang, C.G. He, Z.K. Peng, Z.H. Gao, J.L. Mou, J. Netshape Form. Eng. 3(2), 25 (2011). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the fund of Special Inventive Fund of Science and Technology in Shenyang under the Contract Number F15-172-6-00 and the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, under the Contract Number SKLAB02014001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cheng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, NY., Cheng, M. & Zhang, SH. Effect of Cold Rolling Parameters on the Longitudinal Residual Stress Distribution of GH4169 Alloy Sheet. Acta Metall. Sin. (Engl. Lett.) 28, 1510–1517 (2015). https://doi.org/10.1007/s40195-015-0351-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0351-4

Keywords

Navigation