Skip to main content

Advertisement

Log in

Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

To overcome the suppressive tumor microenvironment and boost the antitumor effect of the immune system, recent studies have focused on a diverse range of immune checkpoint molecules. Several immune checkpoint molecules are currently approved for clinical use, including immunotherapy using antibodies against cytotoxic T-lymphocyte antigen-4 and programmed cell death protein-1. Biomaterials such as particle-based systems, scaffolds, and conjugates have been harnessed to elevate the biological performance of immune modulators in vivo by enhancing their delivery efficiency and in vivo half-life. In particular, microparticles are advantageous for the sustained release of encapsulated immune stimulators and selective intracellular delivery to phagocytic APCs such as dendritic cells and macrophages for activation of cell-mediated immune responses through cytotoxic T cells. Nanoparticles have ideal properties for targeted delivery of immune-regulating molecules to tumor-draining lymph nodes after systemic injection. More recent therapeutic approaches, including combination therapy of immune checkpoint molecules with small molecular anticancer or anti-inflammation drugs, may help to broaden the range of current therapeutic targets and lower side effects. Taken together, particle-based biomaterials could enhance therapeutic outcomes of current biotherapies (antibodies, cells, and genes), and—more importantly—of immunotherapy combined with chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cao Q, Wang Y, Zheng D, Sun Y, Lee VW, Zheng G, Tan TK, Ince J, Alexander SI, Harris DC (2010) IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol 21:933–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25:1815–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AS, Koshy ST, Stafford AG, Bastings MM, Mooney DJ (2016) Adjuvant-loaded subcellular vesicles derived from disrupted cancer cells for cancer vaccination. Small 12:2321–2333

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Lowik CW, Ossendorp F (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 192:209–218

    Article  CAS  PubMed  Google Scholar 

  • Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, Jones H, Wilkinson RW, Honeychurch J, Illidge TM (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468

    Article  CAS  PubMed  Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HE, Mok H (2016) Polydopamine-coated porous microspheres conjugated with immune stimulators for enhanced cytokine induction in macrophages. Macromol Biosci. doi:10.1002/mabi.201600195

    Google Scholar 

  • Jeanbart L, Ballester M, de Titta A, Corthesy P, Romero P, Hubbell JA, Swartz MA (2014) Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res 2:436–447

    Article  CAS  PubMed  Google Scholar 

  • Jewell CM, Lopez SC, Irvine DJ (2011) In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc Natl Acad Sci USA 108:15745–15750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung H, Mok H (2016) Mixed micelles for targeted and efficient doxorubicin delivery to multidrug-resistant breast cancer cells. Macromol Biosci 16:748–758

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, March K, Chae HD, Johnstone B, Park SJ, Cook T, Merfeld-Clauss S, Broxmeyer HE (2010) Muscle-derived Gr1(dim)CD11b(+) cells enhance neovascularization in an ischemic hind limb mouse model. Blood 116:1623–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, Direnzo D, Nanda V, Ye J, Connolly AJ, Schadt EE, Quertermous T, Betancur P, Maegdefessel L, Matic LP, Hedin U, Weissman IL, Leeper NJ (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536:86–90

    Article  CAS  PubMed  Google Scholar 

  • Koshy ST, Mooney DJ (2016) Biomaterials for enhancing anti-cancer immunity. Curr Opin Biotechnol 40:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Yoon HY, Shin JM, Saravanakumar G, Noh KH, Song KH, Jeon JH, Kim DW, Lee KM, Kim K, Kwon IC, Park JH, Kim TW (2015) A polymeric conjugate foreignizing tumor cells for targeted immunotherapy in vivo. J Control Release 199:98–105

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Jang HE, Kang YY, Kim J, Ahn JH, Mok H (2016) Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomater 29:271–281

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH, Wang J (2016a) Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release 231:17–28

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fang M, Zhang J, Wang J, Song Y, Shi J, Li W, Wu G, Ren J, Wang Z, Zou W, Wang L (2016b) Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5:e1074374

    Article  PubMed  Google Scholar 

  • Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ (2014) Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507:519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Article  CAS  PubMed  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Mia S, Warnecke A, Zhang XM, Malmstrom V, Harris RA (2014) An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-beta yields a dominant immunosuppressive phenotype. Scand J Immunol 79:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok H, Zhang MQ (2013) Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin Drug Deliv 10:73–87

    Article  CAS  PubMed  Google Scholar 

  • Mueller SN, Tian S, DeSimone JM (2015) Rapid and persistent delivery of antigen by lymph node targeting print nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm 12:1356–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Frechet JM (2003) A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc Natl Acad Sci USA 100:4995–5000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SK, Janjic JM (2015) Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics 5:150–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole RM (2014) Pembrolizumab: first global approval. Drugs 74:1973–1981

    Article  CAS  PubMed  Google Scholar 

  • Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J, O’Neill LA, Lavelle EC (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Teng MW, Smyth MJ (2011) Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 108:7142–7147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT (2015) Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol 33:97–101

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Gao D, Gao L, Zhang C, Yu X, Jia B, Wang F, Liu Z (2015) Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz MA, Lund AW (2012) Opinion lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  CAS  PubMed  Google Scholar 

  • Tai X, Van Laethem F, Pobezinsky L, Guinter T, Sharrow SO, Adams A, Granger L, Kruhlak M, Lindsten T, Thompson CB, Feigenbaum L, Singer A (2012) Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 119:5155–5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang DL, Kang R, Coyne CB, Zeh HJ, Lotze MT (2012) PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev 249:158–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA (2014) Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35:814–824

    Article  CAS  PubMed  Google Scholar 

  • Vasievich EA, Huang L (2011) The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Mol Pharm 8:635–641

    Article  CAS  PubMed  Google Scholar 

  • Wang SD, Li HY, Li BH, Xie T, Zhu T, Sun LL, Ren HY, Ye ZM (2016) The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma. Int Immunopharmacol 38:81–89

    Article  CAS  PubMed  Google Scholar 

  • Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, Maute RL, Volkmer AK, Volkmer JP, Liu J, Lim JS, Yang D, Seitz G, Nguyen T, Wu D, Jude K, Guerston H, Barkal A, Trapani F, George J, Poirier JT, Gardner EE, Miles LA, de Stanchina E, Lofgren SM, Vogel H, Winslow MM, Dive C, Thomas RK, Rudin CM, van de Rijn M, Majeti R, Garcia KC, Weissman IL, Sage J (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126:2610–2620

    Article  PubMed  PubMed Central  Google Scholar 

  • West EE, Jin HT, Rasheed AU, Penaloza-Macmaster P, Ha SJ, Tan WG, Youngblood B, Freeman GJ, Smith KA, Ahmed R (2013) PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J Clin Invest 123:2604–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, Plebanski M (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ramishetti S, Tseng YC, Guo S, Wang Y, Huang L (2013) Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 172:259–265

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Jung H, Mok H (2016) Indocyanine green-incorporated exosomes for improved in vivo imaging of sentinel lymph node. Appl Biol Chem 59:71–76

    Article  CAS  Google Scholar 

  • Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM (2004) CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 172:2778–2784

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Ma Y, Wang C, Hai L, Yan C, Zhang Y, Liu F, Cai L (2012) PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Am Soc Nephrol 159:135–142

    CAS  Google Scholar 

  • Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Agri-Bio Industry Technology Development Program (316028-3) through the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Conflict of interest

O. Park, G. Yu, H. Jung and H. Mok declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyejung Mok.

Additional information

Ok Park, Gyeonghui Yu and Heejung Jung have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, O., Yu, G., Jung, H. et al. Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. Journal of Pharmaceutical Investigation 47, 11–18 (2017). https://doi.org/10.1007/s40005-016-0288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0288-2

Keywords

Navigation