Skip to main content

Advertisement

Log in

3D mathematical modeling of calcium signaling in Alzheimer’s disease

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

The present paper focuses on the solution of the three-dimensional calcium advection–diffusion equation in the presence of calcium-binding buffers. As buffers play an important role in maintaining cytosolic calcium concentration level, decrease in buffers leads to increase in cytoplasmic calcium which may further lead to toxicity of Alzheimer’s disease. The governing three-dimensional differential equation has been further converted into one-dimensional equation using similarity transforms. The solution is obtained analytically using Laplace transforms and suitable boundary conditions. The obtained solution is simulated in MATLAB. The graphs clearly show the impact of buffers on calcium concentration level for normal and Alzheimeric cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    Article  Google Scholar 

  • Bezprozvanny I (2011) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    Article  Google Scholar 

  • Brzyska M, Elbaum D (2003) Dysregulation of calcium in Alzheimer’s disease. Acta Neurobiol Exp 63:171–183

    Google Scholar 

  • Carafoli E, Brini M (eds) (2007) Calcium signalling and disease. Springer, New York

    Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  Google Scholar 

  • Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28:96–103

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, Second edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Dave DD, Jha BK (2018a) Analytically depicting the calcium diffusion for Alzheimer’s affected cell. Int J Biomath 11(6):1850088–1850101

    Article  MathSciNet  Google Scholar 

  • Dave DD, Jha BK (2018b) Delineation of calcium diffusion in alzheimeric brain. J Mech Med Biol 18(2):1–15

    Google Scholar 

  • Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer’s disease. J Biol Chem 6:1–1

    Google Scholar 

  • Fall C et al (2002) Computational cell biology. Springer, New York

    MATH  Google Scholar 

  • Jha A, Adlakha N (2015) Two-dimensional finite element model to study unsteady state \(Ca^{2+}\) diffusion in neuron involving ER. LEAK and SERCA. Int J Biomath 8(1):1–14

    Article  Google Scholar 

  • Jha BK, Adlakha N, Mehta MN (2012) Analytic solution of two dimensional advection diffusion equation arising in cytosolic calcium concentration distribution. Int Math Forum 7(3):135–144

    MathSciNet  MATH  Google Scholar 

  • Jha BK, Adlakha N, Mehta MN (2014) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int J Biomath 7(3):1–11

    Article  MathSciNet  Google Scholar 

  • Jha A, Adlakha N, Jha BK (2015) Finite element model to study effect of \(Na^{+}-Ca^{2+}\) exchangers and source geometry on calcium dynamics in a neuron cell. J Mech Med Biol 16(2):1–22

    Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology second. Springer, New York

    Book  Google Scholar 

  • Khachaturian ZS (1993) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 1–11

  • Kotwani M, Adlakha N, Mehta MN (2014) Finite element model to study the effect of buffers. Source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell. J Med Imaging Health Inf 4(6):840–847

    Article  Google Scholar 

  • Laferla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  Google Scholar 

  • Magi S et al (2016) Intracellular calcium dysregulation: implications for Alzheimer’s disease. Biomed Res Int 2016:1–14

    Article  Google Scholar 

  • Makrariya A, Adlakha N (2013) Two-dimensional finite element model of temperature distribution in dermal tissues of extended spherical organs of a human body. Int J Biomath 6(1):1250065-01–1250065-15

    Article  MathSciNet  Google Scholar 

  • Makrariya A, Adlakha N (2015) Two-dimensional finite element model to study temperature distribution in peripheral regions of extended spherical human organs involving uniformly perfused tumors. Int J Biomath 8(6):1550074-01–1550074-30

    Article  MathSciNet  Google Scholar 

  • Mattson MP et al (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23(5):222–229

    Article  Google Scholar 

  • Morris G et al (2018) Could Alzheimer’s disease originate in the periphery and if so how so? Mol Neurobiol

  • Naik PA, Pardasani KR (2018a) Three-dimensional finite element model to study effect of RyR calcium channel. ER leak and SERCA pump on calcium distribution in oocyte cell. Int J Comput Methods 15(3):1–19

    MATH  Google Scholar 

  • Naik PA, Pardasani KR (2018b) 2D finite-element analysis of calcium distribution in oocytes. Netw Model Anal Health Inf Bioinf. https://doi.org/10.1007/s13721-018-0172-2

  • Pathak K, Adlakha N (2015a) Finite element model to study calcium signalling in cardiac myocytes involving pump. Leak and excess buffer. J Med Imaging Health Inf 5:1–6

    Article  Google Scholar 

  • Pathak K, Adlakha N (2015b) Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria J Med. https://doi.org/10.1016/j.ajme.2015.09.007

    Article  Google Scholar 

  • Pchitskaya E, Popugaeva E, Bezprozvanny I (2017) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.06.008

    Article  Google Scholar 

  • Rajagopal S, Ponnusamy M (2017) Calcium signaling: from physiology to diseases. Springer, Singapore

    Book  Google Scholar 

  • Schmidt H (2012) Three functional facets of calbindin D-28k. Front Mol Neurosci 5:1–7

    Article  Google Scholar 

  • Schwaller B (2010) Cytosolic \(Ca^{2+}\) Buffers. Cold Spring Harbor Perspect Biol 1–20

  • Singh N, Adlakha N (2019) A mathematical model for interdependent calcium and inositol 1,4,5trisphosphate in cardiac myocyte. Netw Model Anal Health Inf Bioinf. https://doi.org/10.1007/s13721-019-0198-0

  • Small DH (2009) Dysregulation of calcium homeostasis in Alzheimer’s disease. Neurochem Res 34:1824–1829

    Article  Google Scholar 

  • Smith GD (1996) Analytical steady-state solution to the rapid buffering approximation near an open \(Ca^{2+}\) channel. Biophys J 71:3064–3072

    Article  Google Scholar 

  • Squire L et al (2008) Fundamental neuroscience, Third edn. Elsevier, Amsterdam

    Google Scholar 

  • Supnet C, Bezprozvanny I (2010) Neuronal calcium signaling, mitochondrial dysfunction and Alzheimer’s disease. J Alzheimers Dis 20(2):S487–S498

    Article  Google Scholar 

  • Tewari SG, Pardasani KR (2011) Finite element model to study two dimensional unsteady state cytosolic calcium diffusion. J Appl Math Inf 29:427–442

    MathSciNet  MATH  Google Scholar 

  • Turkington C, Mitchell D (2010) The encyclopedia of Alzheimer’s disease second. Facts on file: an imprint. Infobase Publishing, New York

    Google Scholar 

  • Verkhratsky A et al (2010) Astrocytes in Alzheimer’s Disease. Neurotherap J Am Soc Exp Neurotherap 7:399–412

    Article  Google Scholar 

  • Wang Y, Shi Y, Wei H (2017) Calcium dysregulation in Alzheimer’s disease: a target for new drug development. J Alzheimer’s Dis Parkinsinism 7(5):

  • Yadav RR et al (2012) Three-dimensional temporally dependent dispersion through porous media: analytical solution. Environ Earth Sci 65:849–859

    Article  Google Scholar 

  • Yagami T, Kohma H, Yamamoto Y (2012) L-type voltage-dependent calcium channels as therapeutic targets for neuro- degenerative diseases. Curr Med Chem 1:4816–4827

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devanshi D. Dave.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, D.D., Jha, B.K. 3D mathematical modeling of calcium signaling in Alzheimer’s disease. Netw Model Anal Health Inform Bioinforma 9, 1 (2020). https://doi.org/10.1007/s13721-019-0207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-019-0207-3

Keywords

Mathematics Subject Classification

Navigation