Skip to main content
Log in

Time-Varying Pole-Radius IIR Multi-Notch Filters with Improved Performance

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In signal processing applications, it is often required to have multi-notch filters (MNFs) which simultaneously possess an excellent quality factor, ‘Q’, and a brief transient response. Though, the duration of transient response can be improved by decreasing ‘Q’ which, however, also degrades the quality of the filter. Due to their contradictory nature, dealing with ‘Q’ and transient response becomes a difficult task. This paper is a sincere attempt to address this problem for MNFs by exploring time-varying pole-radius infinite impulse response MNF designs employing a hyperbolic tangent sigmoid (HTS) function-based pole-radius variation. Two-notch and three-notch filters, based on HTS function, are designed, analyzed for stability and tested for transient suppression, selectivity and noise removal. Experimental validations supported by simulations on sinusoids and ECG signals are performed in the LabVIEW\(^{\mathrm{TM}}\) environment and have been presented as complete performance assessment. In contrast to the recently reported and traditional MNF designs, significant performance enhancements were recorded for the proposed designs. Therefore, based on the presented investigations, it is concluded that the proposed MNFs are efficient designs for removing harmonics from sinusoids and ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferdjallah, M.; Barr, R.E.: Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals. IEEE Trans. Biomed. Eng. 41(6), 529–536 (1994)

    Article  Google Scholar 

  2. Ziarani, A.K.; Konrad, A.: A nonlinear adaptive method of elimination of power line Interference in ECG signals. IEEE Trans. Biomed. Eng. 499(6), 540–547 (2002)

    Article  Google Scholar 

  3. Hamilton, P.S.: A comparison of adaptive and non-adaptive filters for reduction of powerline interference in the ECG. IEEE Trans. Biomed. Eng. 43(1), 105–109 (1996)

    Article  Google Scholar 

  4. Thakor, N.V.; Zhu, Y.S.: Application of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. IEEE Trans. Biomed. Eng. 38(8), 785–794 (1991)

    Article  Google Scholar 

  5. Ma, W.K.; Zhang, Y.T.; Yang, F.S.: A fast recursive-least-squares adaptive notch filter and its applications to biomedical signals. Med. Biol. Eng. Comput. 37(1), 99–103 (1999)

    Article  Google Scholar 

  6. Pei, S.C.; Tseng, C.C.: Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans. Biomed. Eng. 42(11), 1128–1132 (1995)

    Article  Google Scholar 

  7. Ţarălungă, D.D.; Ungureanu, G.M.; Hurezeanu, B.; Strungaru, R.; Gussi, I.; Wolf, W.: Abdominal signals processing: power line interference removing by applying notch filters. In: Proceedings of Electrical and Power Engineering (EPE), IEEE International Conference and Exposition, pp. 158–161 (2014)

  8. Piskorowski, J.: Powerline interference rejection from sEMG signal using notch filter with transient suppression. In: Proceedings IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 1447–1451 (2012)

  9. Jou, Y.D.; Lin, Z.P.; Chen, F.K.: Interference elimination of electrocardiogram signals using IIR multiple notch filters. In: IEEE 5\(^{{\rm th}}\) Global Conference on Consumer Elecrtronics, pp. 659–660 (2016)

  10. Sohel, M.A.; Naaz, M.; Raheem, M.A.; Munaaf, M.A.: Design of discrete time notch filter for biomedical applications. In: IEEE Devices for Integrated Circuit (DevIC), pp. 487–490 (2017)

  11. Verma, A.R.; Singh, Y.: Adaptive tunable notch filter for ECG signal enhancement. Proc. Comput. Sci. 57, 332–337 (2015)

    Article  Google Scholar 

  12. Wagner, D.; Bongers, W.; Kasparek, W.; Leuterer, F.; Monaco, F.; Münich, M.; Schütz, H.; Stober, J.; Thumm, M.; Brand, H. v.d.: A multi-frequency notch filter for millimeter wave plasma diagnostics based on photonic bandgaps in corrugated circular waveguides. In: EDP Sciences EPJ Web of Conferences, p. 87 (2015)

  13. Hoogendijk, R.; Heertjes, M.F.; van de Molengraft, M.J.G.; Steinbuch, M.: Directional notch filter for motion control of flexible structures. Mechatronics 24(6), 632–639 (2014)

    Article  Google Scholar 

  14. Teng, W.; Zhang, X.; Zhang, Y.; Yang, L.: Iterative tuning notch filter for suppressing resonance in ultra-precision motion control. Adv. Mech. Eng. 8(11), 1687814016674097 (2016)

    Article  Google Scholar 

  15. Chien, Y.R.: Design of GPS anti-jamming systems using adaptive notch filters. IEEE Syst. J. 9(2), 451–460 (2015)

    Article  MathSciNet  Google Scholar 

  16. Borio, D.: A multi-state notch filter for GNSS jamming mitigation. In: IEEE International Conference on Localization and GNSS (ICL-GNSS), pp. 1–6 (2014)

  17. Mojiri, M.; Karimi-Ghartemani, M.; Bakhshai, A.: Estimation of power system frequency using an adaptive notch filter. IEEE Trans. Instrum. Meas. 56(6), 2470–2477 (2007)

    Article  MATH  Google Scholar 

  18. Tan, L.; Jiang, J.: Novel adaptive IIR notch filter for frequency estimation and tracking. IEEE Signal Process. Mag. 26(6), 186–189 (2009)

    Article  Google Scholar 

  19. Punchalard, R.; Koseeyaporn, J.; Wardkein, P.: Indirect frequency estimation based on second-order adaptive FIR notch filter. Signal Process. 89(7), 1428–1435 (2009)

    Article  MATH  Google Scholar 

  20. Dai, W.H.; Qiao, C.J.; Wang, Y.K.; Zhou, C.: Adaptive cascaded notch filter for frequency estimation of multiple sinusoids. In: Wireless Communication and Sensor Network Proceedings of the International Conference on Wireless Communication and Sensor Network (WCSN 2015), pp. 138–144 (2016)

  21. Mirmohamadsadeghi, L.J.; Vesin, M.: Real time multi signal frequency tracking with a bank of notch filters to estimate the respiratory rate from the ECG. Physiol. Meas. 37(9), 1573 (2016)

    Article  Google Scholar 

  22. Kang, C.H.; Kim, S.Y.; Park, C.G.: A GNSS interference identification using an adaptive cascading IIR notch filter. GPS solut. 18(4), 605–613 (2014)

    Article  Google Scholar 

  23. Choi, J.W.; Cho, N.I.: Suppression of narrow-band interference in DS-spread spectrum systems using adaptive IIR notch filter. Signal Process. 82(12), 2003–2013 (2002)

    Article  MATH  Google Scholar 

  24. Psychogiou, D.; Mao, R.; Peroulis, D.: Series-cascaded absorptive notch-filters for 4G-LTE radios. In: IEEE Radio and Wireless Symposium (RWS), pp. 177–179 (2015)

  25. Cho, Y.H.; Rebeiz, G.M.: Tunable 4-pole dual-notch filters for cognitive radios and carrier aggregation systems. IEEE Trans. Microw. Theory Tech. 63(4), 1308–1314 (2015)

    Article  Google Scholar 

  26. Tan, L.: Digital Signal Processing: Fundamentals and Applications. Elsevier, New York (2008)

    Google Scholar 

  27. Dutta Roy, S.C.; Kumar, B.; Jain, S.B.: FIR notch filter design–a review. Facta Univ. Electron. Energ. 14(3), 295–327 (2001)

    Google Scholar 

  28. Piskorowski, J.: Digital Q-varying notch IIR filter with transient suppression. IEEE Trans. Instrum. Meas. 59(4), 866–872 (2010)

    Article  Google Scholar 

  29. Tan, L.; Jiang, J.; Wang, L.: Pole-radius-varying IIR notch filter with transient suppression. IEEE Trans. Instrum. Meas. 61(6), 1684–1691 (2012)

    Article  Google Scholar 

  30. Rajagopalan, R.; Dahlstrom, A.: A pole radius varying notch filter with transient suppression for electrocardiogram. World Acad. Sci. Eng. Technol. Int. J. Med. Health Biomed. Bioeng. Pharm. Eng. 8(3), 134–138 (2014)

    Google Scholar 

  31. Piskorowski, J.: Suppressing harmonic powerline interference using multiple-notch filtering methods with improved transient behavior. Measurement 45(6), 1350–1361 (2012)

    Article  Google Scholar 

  32. Rana, K.P.S.; Kumar, V.; Gupta, A.: A pole-radius-varying IIR notch filter with enhanced post transient performance. Biomed. Signal Process. Control 33, 379–391 (2017)

    Article  Google Scholar 

  33. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.Ch.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.: PhysioBank, PhysioToolkit, PhysioNet: Components of a New Research Resource for Complex PhysiologicSignals. Circulation 101 (23) e215–e220 (2000) (June 13), corresponding MITECG Database, File: 102, http://physionet.org/physiobank/database/mitdb/ (Accessed 26 Nov. 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. S. Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, K.P.S., Kumar, V., Singhal, A. et al. Time-Varying Pole-Radius IIR Multi-Notch Filters with Improved Performance. Arab J Sci Eng 44, 7101–7120 (2019). https://doi.org/10.1007/s13369-019-03814-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03814-w

Keywords

Navigation