Skip to main content
Log in

Ferromagnetic Convection in a Heterogeneous Porous Medium

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of vertical heterogeneity of permeability on the onset convection in a horizontal layer of magnetized ferrofluid-saturated Darcy porous medium is investigated. Four different forms of vertical heterogeneity permeability function \({\Gamma (z)}\) are considered for discussion. The eigenvalue problem is solved numerically using the Galerkin method for three types of temperature boundary conditions namely, (i) isothermal, (ii) insulated to temperature perturbations, and (iii) lower insulated to temperature perturbations and upper isothermal. The general quadratic variation in the vertical heterogeneity of permeability is to hasten the onset of ferromagnetic convection compared with other forms of \({\Gamma(z)}\). The measure of nonlinearity of magnetization and the magnetic susceptibility is found to influence the onset if the boundaries are either isothermal or lower insulated and upper isothermal. Increasing the magnetic number is to augment the onset of ferromagnetic convection. The system is more stabilizing when the boundaries are isothermal and least stable for insulated ones. Compared to the homogeneous porous medium case, the critical wave number is higher if the permeability of the porous medium is heterogeneous and the boundaries are isothermal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({a=\sqrt{\ell ^{2}+m^{2}}}\) :

Overall horizontal wave number

A :

Ratio of heat capacities

\({\vec{B}}\) :

Magnetic induction (T)

d :

Thickness of the porous layer (m)

Dd/dz :

Differential operator (m−1)

\({\vec {g}}\) :

Acceleration due to gravity (m s−2)

H :

Magnitude of \({\vec {H}}\) (Amp m−1)

\({\vec {H}}\) :

Magnetic field (Amp m−1)

H 0 :

Imposed uniform vertical magnetic field (Amp m−1)

\({\hat{{k}}}\) :

Unit vector in z-direction

K 0 :

The mean value of K(z) (m−2)

K(z):

Permeability of the porous medium (m−2)

\({K_p =- (\partial M/\partial T_f )_{{H_0 } ,{T_a }} }\) :

Pyromagnetic co-efficient (Amp m−1 K−1)

\({\ell, m }\) :

Wave numbers in the x and y directions (m−1)

\({\vec {M}}\) :

Magnetization (Amp m−1)

\({M_0 =M(H_0 , T_a)}\) :

Constant mean value of magnetization (Amp m−1)

\({M_1 =\mu _0 K_p^2 \beta /(1+\chi )\alpha _t \rho _0 g}\) :

Magnetic number

\({M_{3}=(1+M_{0}/H_{0})/(1+\chi)}\) :

Non-linearity of magnetization parameter

p :

Pressure (N m−2)

\({\vec {q}=(u,v,w)}\) :

Velocity vector (m s−1)

\({R_{D}= \rho_{0} \alpha_{t} g\beta K_{0}d^{2}/\varepsilon\mu_{f}\kappa}\) :

Darcy–Rayleigh number

t :

Time (s)

T :

Temperature (K)

T L :

Temperature of the lower boundary (K)

T U :

Temperature of the upper boundary (K)

\({T_{a}=(T_{L}+T_{U})/2}\) :

Average temperature (K)

W :

Amplitude of vertical component of perturbed velocity (m s−2)

(x, y, z):

Cartesian co-ordinates (m)

\({\alpha_{t}}\) :

Thermal expansion coefficient (K−1)

\({\beta = \Delta T/d}\) :

Temperature gradient (K m−1)

\({\chi =(\partial M/\partial H)_{H_0 } ,_{T_a } }\) :

Magnetic susceptibility

\({\delta_{1}, \delta_{2}}\) :

Constants and take the value 0 or 1

\({\nabla^{2}=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}+\partial^{2}/\partial z^{2}}\) :

Laplacian operator (m−2)

\({\nabla_{h}^{2}=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2 }}\) :

Horizontal Laplacian operator (m−2)

\({\varepsilon}\) :

Porosity of the porous medium

\({\kappa}\) :

Thermal diffusivity of the fluid (W m−1 K−1)

\({\mu_{f}}\) :

Dynamic viscosity (m2 s−1)

\({\mu_{0}}\) :

Free space magnetic permeability of vacuum (H s−1)

\({\varphi}\) :

Magnetic potential (Amp)

\({\Phi}\) :

Amplitude of perturbed magnetic potential (Amp)

\({\Gamma (z)}\) :

Non-dimensional vertical heterogeneity of permeability function

\({\rho_{f}}\) :

Fluid density (kg m−3)

\({\rho_{0}}\) :

Reference density at T a (kg m−3)

\({\Theta }\) :

Amplitude of perturbed temperature (K)

b :

Basic state

f :

Fluid

s :

Solid

References

  1. Neuringer J.L., Rosensweig R.E.: Ferrohydrodynamics. Phy. Fluids 7(12), 1927–1937 (1964)

    Article  MathSciNet  Google Scholar 

  2. Finlayson B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  MATH  Google Scholar 

  3. Bashtovoi V.G., Berkovski B.M.: Thermomechanics of ferromagnetic fluids. Magn. Gidrodyn. 3, 3–14 (1973)

    Google Scholar 

  4. Blennerhassett P.J., Lin F., Stiles P.J.: Heat transfer through strongly magnetized ferrofluids. Proc. R. Soc. Lond. A 433, 165–177 (1991)

    Article  MATH  Google Scholar 

  5. Borglin S.E., Mordis J., Oldenburg C.M.: Experimental studies of the flow of ferrofluid in porous media. Transp. Porous Med. 41, 61–80 (2000)

    Article  Google Scholar 

  6. Shivakumara I.S., Nanjundappa C.E., Ravisha M.: Thermomagnetic convection in a magnetic nanofluid saturated porous medium. Int. J. Appl. Math. Eng. Sci. 2(2), 157–170 (2008)

    Google Scholar 

  7. Shivakumara, I.S.; Nanjundappa, C.E.; Ravisha, M.: Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium. ASME J. Heat Transf. 131, 101003-1-9 (2009)

  8. Nanjundappa C.E., Shivakumara I.S., Ravisha M.: The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45, 213–226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jinho Lee, Shivakumara I.S., Ravisha M.: Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium. Transp. Porous Med 86, 103–124 (2011)

    Article  Google Scholar 

  10. Sunil , Sharma P., Mahajan A.: Nonlinear ferroconvection in a porous layer using a thermal nonequilibrium model. Spl. Topics Rev. Porous Med 1(2), 105–121 (2010)

    Article  Google Scholar 

  11. Shivakumara I.S., Jinho Lee, Ravisha M., Gangadhara Reddy R.: The onset of Brinkman ferroconvection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 54, 2116–2125 (2011)

    Article  MATH  Google Scholar 

  12. Shivakumara I.S., Chiu-On Ng, Ravisha M.: Ferromagnetic convection in a heterogeneous darcy porous medium using a local thermal non-equilibrium (LTNE) model. Transp. Porous Med. 90, 529–544 (2011)

    Article  Google Scholar 

  13. Shimpi M.E., Deheri G.M.: Ferrofluid lubrication of rotating curved rough porous circular plates and effect of bearing’s deformation. Arab. J. Sci. Eng. 38(10), 2865–2874 (2013)

    Article  Google Scholar 

  14. Braester C., Vadasz P.: The effect of a weak heterogeneity of a porous medium on natural convection. J. Fluid Mech. 254, 345–362 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Simmons C.T., Fenstemaker T.R., Sharp J.M.: Variable-density flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. J. Contam. Hydrol. 52, 245–275 (2001)

    Article  Google Scholar 

  16. Prasad A., Simmons C.T.: Unstable density-driven flow in heterogeneous porous media: a stochastic study of the Elder [1967b] ‘short heater’ problem. Water Resour. Res. 39, 1007 (2003)

    Article  Google Scholar 

  17. Nield D.A., Kuznetsov A.V.: The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium. Int. J. Heat Mass Transf. 50, 3329–3339 (2007)

    Article  MATH  Google Scholar 

  18. Nield D.A., Simmons C.T.: A discussion on the effect of heterogeneity on the onset of convection in a porous medium. Transp. Porous Med. 68, 413–421 (2007)

    Article  MathSciNet  Google Scholar 

  19. Nield D.A., Kuznetsov A.V.: The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium: Moderate heterogeneity. Int. J. Heat Mass Transf. 51, 2361–2367 (2008)

    Article  MATH  Google Scholar 

  20. Nield D.A., Kuznetsov A.V.: The onset of convection in a heterogeneous porous medium with transient temperature profile. Transp. Porous Med. 85, 691–702 (2010)

    Article  MathSciNet  Google Scholar 

  21. Kuznetsov A.V., Nield D.A., Simmons C.T.: The onset of convection in a strongly heterogeneous porous medium with transient temperature profile. Transp. Porous Med. 86, 851–865 (2011)

    Article  MathSciNet  Google Scholar 

  22. Nield D.A., Kuznetsov A.V.: The onset of convection in a heterogeneous porous medium with vertical throughflow. Transp. Porous Med. 88, 347–355 (2011)

    Article  MathSciNet  Google Scholar 

  23. Stiles P.J., Kagan M.: Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. J. Colloid Int. Sci. 134, 435–448 (1990)

    Article  Google Scholar 

  24. Nield D.A., Bejan A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shivakumara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivakumara, I.S., Ng, CO. & Ravisha, M. Ferromagnetic Convection in a Heterogeneous Porous Medium. Arab J Sci Eng 39, 7265–7274 (2014). https://doi.org/10.1007/s13369-014-1288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1288-z

Keywords

Navigation